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PREFACE

The Finite Analytic llethod

This monograph contains the fundamental development of

the new numerical method called the "Finite Analytic" method.

The finite analytic method differs from the finite difference

method and the finite element method. The basic idea of the

finite analytic method is the incorporation of local analytic

solutions in the numerical solution of linear or nonlinear

partial differential equations. In the finite analytic method,

the total problem is subdivided into a number of small

elements. The local analytic solution is obtained for the

slaall element in which the governing equation, if nonlinear,

is linearized. The local analytic solutions are then expressed

in algebraic form and are overlapped to cover the entire

region of the problem. The assembly of these local analytic

solutions, which still preserves the overall nonlinearity of

the governing equation, results in a system of linear

algebraic equations. The system of algebraic equations is then

solved to provide the numerical solutions of the total problem.

Unlike the finite difference laethod, the finite analytic

method does not tamper with the differentials or the

derivatives of the governing equation, nor does the analytic

method need the shape function which is made to satisfy the

integral form of the governing equation, as in the finite

element method. The finite analytic solution obtained from the

finite analytic method is differentiable. As a result, the

derivative of the solution obtained analytically is much i_ore

reliable. In this 1_onograph the finite analytic solution is

shown to be stable, even _hen the highest derivative term of

the partial differential equation is multiplied by a small

factor, such as one over Reynolds number. It is also si_own uhat

Cne finite analytic solution for Navier-Stokes equations aC

,_igh Reynolds numbers auuomatically provides a gradual shi_t

of the upwinding effect. Therefore the finite analytic solution

accurately simulates the effect of convection and eliminates
the false numerical diffusion that would occur in the upwinding

difference or unidirec_ion difference used in the finite

difference or the finite element metilods. The coupuzatlonal

_ime for the finite anayltic solution is ShOWn _o De amour

equal to that of tile finite difference nlethod. In certain cases,

due to the stability of ti_e _ystem of algeuraic equations

derived in ti_e finite analyitc method, the overall com@utacionai

5i;_e can ue even less. The finite analytic solution doriveu in
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tile present analytic mehtod is in its most elementary form in

terms of accuracy. But it has already been shown to be

sufficient for the problems under consideration. Further

accurate finite az_a!ytic formulae can be derived and are

indicated in the monograph.

The finite anlytic method was developed in early 1977,

when Dr. Peter Li was then a graduate student working on his

doctoral dissertation _ith me. He had been having difficulty in

obtaining convergence of a syste_l of finite difference

algebraic equations derived from the Navier-Stokes equations
for two-dimensional turbulent flow %;ith a second-order

5urbulent model. I conceived the finite analytic method one

night and solved the simple two-dimensional Laplace equation.

Li then carried the finite analytic method to the unsteady

diffusion equation and nonlinear ordinary differential

equations and colaplted his Ph.D. dissertation in 1978.
t_

In 1981, Messrs. ilohamad Zahed Sheikholeslami, Bahram _,halighi,

and Kanwerdip Singh developed the finite analytic method

further by solving the ordinary and partial differential

equations and uhe Navier-Stokes equations with primitive

variables. This bound voluble essentially contains the research

results of ilessrs. Sheikholeslami, Khalighi, Singh, and myself.
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CHAPTER I

INTRODUCTION

Two-point boundary value problems associated with

systems of linear and nonlinear ordinary differential

equations occur in man>" branches of mathematics,

engineering, and the various sciences. In these problems

boundary conditions are specified at the end points of

the problem interval, and a solution of the differential

equations over the interval is sought which satisfies

the given boundary conditions.

'generally, for boundary value problems, if the

differential equation is nonlinear or it is linear :,ith

variable coefficients, the construction of a solution,

even though it may be known to exist and to be unique,

is difficult, and the integration of the differential

equation must often resort to a numerical approach.

Several numerical methods have been develooed for

solvin 7 erdinar 7 dlfferential equation_ ,of bounda:'v

value problem, '.,ilichmay be divided into t;,o main

a_proaches, discreti:ation methods and integral methods.

The discreti:aticn methods are based on ,lisc_eti-.in_ tile

_._roblem domain into small re_tons. Dependinj cn how the

ai;pro×;m, ate...... __,_I,l"ion _._ devi_ed in the -nail ._'_'-'_.e_:i,.ns,



there are several discretization methods. For example,

finite difference (FD) methods (i), (l), finite element

(FE) method (3), and the recently developed finite

analytic (FA) methoU (_).

The integral methods are based on approximating the

solution over the whole interval by a series. Each term

of the series is usually a polynomial or a suitable

function that satisfies the boundary conditions. The

coefficients of the series are determined by substituting

the series into the differential equation, and minimizing

the residual (5).

in the FD method, the total region is broken up into

finite subregions by a finite number of discrete points.

The finite difference is obtained from a truncated Taylor

series expansion to provide approximately the relation

between the dependent variable and its derivative at a

chosen point, and its neighboring points. The differen-

tial equation at each point is approximated by a dif-

ference equation. Therefore, for n discrete points, n

al_ebrai,: equations are obtained, relating the unknown

dependent variables ,_ith its ngighboring points. This

system is readily solved if the algebraic system is linear.

If it is nonlinear, the equation is lineari:ed and the

solution is obtained with a suitable itcrati_'e method io).



In the FE method, the first step is to subdivide the

problem domain into small subregions. Then an approximate

functional form connecting the unknown nodal values of the

dependent variables in the subregion is chosen to

represent the solution in each subregion. These approxi-

mate functions (shape functions) normally are polynomials

because of their simplicity. The approximate function is

then made to satisfy the governing equation in an integral

form in each subregion. The most commonly used forms of

the integrals are the weighted "esiduals integral (WR) and

the _'ariational form of the governing equation (F). The

weighted residuals integral is based on minimization of

the residual in the subregion when the approximate solution

is substituted into the integral of the differential

equation governing the problem. Other schemes are possible

to achieve the aim of minimization of resuduals such as

collocation, sub-domain, least squares, and Galerkin

methods (8). Ninimizing the residual leads to an algebraic

equation describing the behavior of an element. For _ii the

elements a set of linear (or nonlinear) simultaneous alge-

braic equations are obtained relating the value at each

nodal point with its neighboring points. The set of alge-

braic equations is _olved as in the case of the FD method.

The recently developed finite analytic _FA) method

is neither a finite difference nor a finite element method.



The FA method utili:es local analytic solutions of the

differential equation obtained for small regions regions

that form the total region considered in the problem. The

FA numerical solution of the problem is then made of all

the local analytic solutions. If the differential equation

is nonlinear or linear with complex variable coefficients,

the FA method divides the _roblem into many subintervals.

In each subregion, the nonlinear terms are locally linear-

i-ed, and the complex variable coefficients are replaced

by a local constant. By solving the differential equation

in each subregion, a relation bet',,een the unknown dependent

variable at nodal points in the subregion is obtained. By

repeating this procedure for each subregion, a system of

algebraic equations i5 obtained relating the unknown

dependent variable at each point with values of surrounding

points. The system of t_,e algebraic equations is then

solved as in the FD or FE methods.

The methods described above have been used exten-

sivel.v in numerical solutions of differential equations.

The FD method is easy to handle, but, due to the approxi-

ma'ion made for the derivatives, the method mav not provide

accurate solutions, and sometimes the system of algebraic

equation derived from a particular finite difference

scheme is unstable. The FE method is relatively stable

and can treat very complex boundary ccnd:t_ons, but _t

meeds a cons_.'.erab_e more amount of mathematics t_an the



finite difference (FD) method. .-_iso, it has difficulty in

treating tee boundary conditions specified at infinity.

The aim of this study is to extend the FA method to

beundar.v value problems of second order ordinary differ-

ential equations, and to examine the convergence, stability,

and accuracy of the FA method. A comparison of the finite

analytic solution with solutions obtained from the FD

method is given for several numerical examples.
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LI TEK':TURE REVIEW

Although there are many works which have studied

numerical solution of two point boundary value problems,

there are few works that bear resemblance to the FA method

(_), (9), (i0), which shall be investigated in the present

study. Before reviewing d_tails of previous works,

different methods used in solving both linear and non-

linear two point boundary value problems will be briefly

described. It should be mentioned that most methods used

to solve nonlinear boundary value problems invoke local

linearization at some stage of the numerical calculation.

II-i. Numerical Methods

II-I-I. The Method of Weighted Residuals

The method of weighted residuals, sometimes known

as the method of undetermined coefficients, is essentially

an integral method of obtaining solutions to differential

equations. In this method, the unknown solution is

expanded in a set of trial functions with adjustable

constants, which are chosen to give the best solution.

The trial functions are a family of functions satisfying

the boundary conditions of the original problem. The

substitution of these trial functions and their deriva-

tives into the original equation gives a residual equation



describing the error in the solution interval. If the

trial function were the exace solution, the residual would

be zero. The constants in the trial function are chosen

in such a way that the residual is forced to be zero in

an average sense.

There are several ways for computing the coefficients

of the trial series; for example, the collocation method,

the least squares method, and the Galerkin method. In the

collocation method (1!), (12), the coefficients are

determined by the requirement that the trial function has

to satisfy exactly the governing equation at chosen

locations. The numerr of locations chosen should be equal

to the number of unknown coefficients. In the least

squares method, the weighting function is chosen to be the

residual. Thus, the method is based on choosing coeffi-

cients of trial function such that the integral of the

square of the residual over the interval under consideration

can be minimized.

One of the best known approximate methods was

developed by Galerkin in 1915 (15). In this method, the

weighted functions are chosen to be the trial functions.

The trial functions must be chosen as members of a complete

set of orthogonal functions. A set of orthogonal

functions is complete if an}' function of a given class

can be expanded in terms of the set. Thus, the Galerkin
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method forces the residual to be zero by making it

orthogonal to each member of a complete set of functions.

11-1-2. Finite Difference _lethod

Among different methods suggested for solving bound-

ary value problems, the FD methods are more frequently

used (i), (2). The FD method mentioned in Chapter I

is based on the difference approximation of derivatives

derived from truncated Taylor series expansions, thus

converting the ordinary differential equation into a set

of algebraic equations, thus provides the numerical

calculation of the ordinary differential equation.

Although the FD method is not the present FA method,

there are several studies comOining the FD methods with

the analytic solutions of problems (9), (I0), which have

some resemblance to the FA method.

Allen and Southwell (i0), in seeking a numerical

solution for the two-dimensional motion of a viscous

fluid past a fixed cylinder, solved a nonlinear partial

differential equation in terms of stream function and

vorticity. This equation i3 linear, and is solved by a

finite difference method yielding a relationship between

the stream function at a point and its neighboring nodes.

The vorti¢ity equation is solved by a "two diagram

technique" in which the stream function and the vorticitv

are modified alternately. That i_, the lineari:ed

vorticity equation i_ divided into two parts, each of



_hich _s an ordinary differential equation because it

contains only terms with derivatives in one direction.

The analytic solution is then obtained for each ordinary

differential equation. These analytic solutions are used

to modify the finite difference approximation of the

vorticity equation. The modified finite difference

equations include the exponential terms that are obtained

from the analytic part of the solution.

Recently, Dennis and Hudson _9) exploited this idea

further to obtain a higher order approximation to second

order partial differential equations. A_ain, the partial

differential equation is divided into t_o parts, each

part being an ordinary differential equation. These

equations are solved in two normal directions. The t'_,'o

analytic solutions are then matched at the point of

intersection of the t_o normal lines. This process

leads to the finite difference approximation to the

original problem. The above methods are similar to the

FA method in the sense that both invoke the analytic

sol'ations. Ho_,ever, in the ,_resent FA method, the finite

dttference approximation is net used. fhe F.\ numeri_a l

solutions are obtained from the assembly of all local

anat,'t ic solutions.

[!-I-3. Fin:to Element _ethod

,n _he FI: netho, _. t'_ .,i_t-: • _ r• _, , ,.a is di.cussed in Cha:,te. .,

the ,liffe:'t_n'ial equation ,.s '.,ritten in it. _ variatie:',a[
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form, known as a functional or an integral function, is

to be minimi.-ed in each finite element. Therefore, after

discretizing the whole region into small finite sub-

regions, the solution will be represented by an approxi-

mate function (shape function) with unknown coefficients.

Substitution of this approximate function into the

integral function and minimizing it yields a system of

algebraic equations from which the unknown coefficients

can be obtained. This system can be sol_-ed as in the

case of the FD method.

II-I-4. Finite Ana!vtic .Method

Direct utilization of the local analytic solution of

the lineari'ed problem in the numerical solution of the

ordinary differential equations has not been used in the

above methods. The idea of incorporation of local

analytic solutions of the lineari-.ed equation in the

numerical solution of boundary value problems, _,hich is

the basic principle or the FA method first introduced

by Chen and Li _4_. Although most of their _,ork _,as

devoted to the treatment of zartial differential equa-

tions, there is a short discussion about ordinary

differential equations. The example considered _,as the

Falkner-Skan problem _i_]" the solution of _'''_ - ff''

..;_l-t'']" = 0, a nonlinear dif _,e,ential- equa'ion. _,ith

"_oundarv conditions f'i2_ - fi_ - 0 and f'_=', - I. The

_overnin; equat'_en is linearized and integrated locally.
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However, the integrand is approximated by a second

degree polynomial. The problem is then cast into an

initial value problem, and solved by a shooting technique.

In the shooting method, only f and f' are given at the

boundary n = 0. Therefore, f"C0) will have to be

determined wuch that the solution satisfies the far field

boundary condition of f'(_) = i at c = _. This shooting

algorithm is similar to that used by Carnahan et.al (6).

However, instead of the Runge-Kutta integration scheme,

the FA formulation was used.

In the present investi_ationo , the shooting technique

is not used. All problems are treated as boundary value

problems. In solving the Falkner-Skan problem, the

linearized equation in f' is solved as a boundary value

problem with the known boundary conditions, i.e., f' 0) = 0,

f'(_) = i when the far field boundary condition f'(= = !

in the calculation is replaced by a finite domain. That

is, it is assumed that f' (c_) = 1.0. This Falkner-Skan

problem is solved in detail and discussed in Chapter VI.

ll-_. _[ethods of $olvin_ Boundary Value Problems

So far different numerical schemes for solvin_

boundary value problems have been considered, in solvin_

boundary value problems with hi_her order finite

difference schemes, such as Run_e-Kutta, the problem is

usually cast into a series of first order initial value

problems. To solve these eaua'ions, the initial condition
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for each equation is needed. But since the original

conditions a:-e s_ecified at the boundaries, some of the

initial conditions will be missing. There are different

methods of obtaining these missing initial conditions.

The most widely used technique of finding a missing

initial condition is the shooting method, which will be

discussed briefly.

ii-2-i. Shooting Nethod

The methods of finding the missing initial conditions

can be systematically applied. One of the most useful

methods is the method of adjoints for the linear equation.

This method is based on associating with every set of

linear ordinary differential equations a companion set

of equations called the adjoint equations. The adjoint

equations are defined as the set of homogeneous linear

ordinary differential equations whose matrix of coeffi-

cients is the negative transpose of the matrix of the

original set of linear ordinary differential equations.

The initial and terminal boundary conditions of adjoint

eauations are related to the initial and terminal

boundary conditions of the original system by a certain

identity. By solving the adjoint equations, the missing

initial conditions are found directly. For nonlinear

two point boundary value problems, the method of adjoint

equations can also be used iteratively after the nonlinear

term is locally lineari:ed. The method for nonlinear
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problems does not comDu=e the missing initial conditions,

but rather computes corrections to the trial values for

the missin_ initial conditions. For a complete discus-

sion of this method and similar methods, refer to (15).

II-2-2. Invariant Imbedding

[nvariant imbedding is another technique that can be

exploited to find the missing initial conditions (16),(17).

Consider a differential equation which is to be solved in

the domain (0,tf). Instead of only considering a single

problem with an interval of (0,tf), the invariant

imbeddin_ approach is to consider a family of problems

that consist of a variable interval (0,a) where a ranges

from zero to the value of tf. Then the problems are

solved first for a small interval of (0,a), where a is

close to zero. Since the differential equation had

almost zero interval, the missing initial condition may

be obtained by a Taylor series. Expressed in this way

the original two point boundary value problem becomes

an initial value problem in the invariant imbedding

formulation. The famil F of problems is then formed by

increments of the interval length. This is the essence

of the method of invariant imbedding.

II-3. Linearization Technique

Many boundary value problems occuring in science an&

en_ineerin_ are nonlinear. Therefore, to be solved by
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the FD or FA method, it is necessary to lineari:e them.

There are different methods to overcome this difficulty.

One way is the interval averaging approximation; i.e.,

the nonlinear terms are replaced by an integral average

of their values over each small subregion. Cbviously, to

start the lineari:ation, an initial guess for the non-

linear terms is needed, which makes the process an

iterative one. Quazilinearization is a more standard

way of linearising the nonlinear forms. In the quasi-

lineari:ation technique, instead of being solved

directly, the nonlinear differential equation is solved

recursively with an approximated linear differential

equation. To illustrate the quasilinearizations,

consider the nonlinear second order differential equa-

tion y"(x) = f(y(x) v'(x)) Here #,v ', . . __. ,y ) denotes the

function which contains nonlinear terms. The quasi-

linearization process starts _ith e_panding f in Taylor

series in terms of the functions v and v' around a given

function of v = v Ix) with second and higher order
"0 "0"

terms of the series expansion omitted. Here Fo,x) is a

chosen function which satisfies the boundary conditions

and is used a; the initial guess of the solution.

Re_lacin_ f by its _a?'lor series expansion gives a !inea _

&ifferential equation ;_ith variable coefficients.

Solving this equation '.¢ith the initial app:-oxinated
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funct ion \ ix _ a 5e_rcr apt,ro_imatio:% to the solu= :oll

_,ill be obt,llned say Vlt.,,] Replacin_ v by v and' ° " o 1

ret, eatln< tkis procedure, further i:nproved solution _,iII

be obtained, l'hts iterative procedure is very similar

to the methed of successive substitution or the Ne_,ton-

R,lphso'I method, bu, _ ins,_oad or r<_ots of ,in al,qebI':iic

Oqtl,ilTt,_ll, it CO:ltli!.ll.'4 thd ._Oltlt iOII of .I dtt'fel'e,tti,i[

cqu.tt ieu. l'his method _,.ls ort.qin.itl\" de_eloped by 3eIt:n.tn

:ll'l,_t K,t_.:l!_,l t I,'t_. :lUd has been used for solvin,_ nentineii:"

<"l_c*_ pOillt [_Ot.llh[,lI'\ Vdi. tiO i_YOblOlll. "4 by llldll\" ,itltho:s t [9) .

_2c _,_ {:1 cTh.ipter V arid t']i,ipl:c," \I ,,I the pt'osent ._<_'<ld\,

COIllp,ll'[ SOil I g !llildO [_OI_COII qtl.i'; I I {'lc,lr t A,lt tO_I ,Ilia

illtO,_I';I [ ,IVCI'_I_ tll,_ ,l!'pl'O\l_llilt i, Oli.'£ .
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PRINCIPLES OF FINITE ANALYTIC METHOD

The basic idea of the finite analytic method

is the incorporation of analyti.: solutions in the nu-

merical solution of differential equations. To illus-

trate tile basic principles of the FA method for solving

boundary value problems of ordinary differential equa-

tions, consider a second order ordinary differential

equation:

L(y (x)) = G a < x< b

subject to boundary conditions

Ba(?'a,y _) = 0 BbCYb,y _) = 0 (III-i)

over an interval [a,b] as shown in Figure (lll-l-a).

L :nay be a linear or nonlinear second order differential

operator, G is the nonhomo_eneous term of the ordinary

differential e,Tuation. The boundary conditions are speci-

fied at x = a and x = b.

The objective of the FA method is to obtain a nu-

merical solution for such a boundary value nroblem, when

the analytic solution of the izroblem is difficult to ob-

tain, due to the noniinearit'" of the differential ecua-

tion or the co_nlexit'" of the coefficients.
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The first step in applying the FA method is to sub-

divide the total region (line x) of the problem into n

finite subregions with finite line elements of length h,

v. denoting the nodal value of the dependent variables
' l'

.th
at i node where i = 1,2, .... n + I.

Consider a line element of length 2h (Figure !ll-i-b).

In this small line element, if the differential equation

is linear with complicated coefficients the coefficients

are made constant locally, and if the differential equation

is nonlinear, the nonlinear terms are linearized and variable

coefficients made constant locally. The local constant used

in linearization varies from interval to interval. The

analytic solution for the locally linearized problem can

be obtained easily. If the line elements are small, the

local linearization is a good approximation, since the

effect of the variable coefficients or the nonlinearity

of the problem is still approximately preserved in the

total region. Indeed, local lJnearization also is used

in FD and FE methods. The problem now has been reduced

into one with many finite regions, where analytic solu-

tions can be obtained, if the boundary conditions in each

simple finite line element are properly specified.

Let the governing equation in a line element be

L(y(:<)) = 6 where L is now a linear second order dif-

ferential o_erat_r,.. and let ?'N' v,,X' v• '5' y be the nodal
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boundary of the line element. The analytic solution can

be obtained sn_,-;vhere in the line as a function of the

boundary conditions

v = f(y_, _. , y_, _. , h, ×, G) _ITI-_)..
S S

h is the distance between the midpoint p and the boundary

points, s and N. When equation (III-2) is evaluated at

the point n, it provides an anaiyti¢ relationship between

the functional valu_ at the interior point p of the local

subregion _" , and its surrounding points N and S or
.p

Yp f<>._'Ys' Yq, Y_, h) (III-3)

Furthermore, since Equation (Ili-2) is analytic, it is

differentiable. Thus differentiating Equation (Ill-I)

and evaluating at the point p, we have

'" -- f'_ ×s' ' >'_',_ y._, z.q h) (III-4)

Equations (Ill-S) and (II!-4) are the fundamental formu-

lae for the _resent FA method. For the linear or locali_"

iineari-ed problem, the S-point FA formula has the form

• p :IS C._Y N ÷ ,

,I[_-5)

:,here the ,:_effiaients C, D, C_ D'_re obtained from the



local analytic solution. It should be noted here that

the finite analytic solution obtained in Equation (Ill-S)

in the interior of the subregion is exact in the sense

that it is obtained from an analytic solution to the ODE

in the finite subregion. The only approximation involved,

if any, is from the local approximation made on the coef-

ficient or, nonlinear term of the governing equation.

In an internal finite subregion of the total region

D, the neighboring nodal value of YN' Y5' YN' YS are, in

general, unknown. However, they can be in turn expres-

sed as an analytic function of their neighborinz points.

This procedure may be repeated for all the unknown nodes

(I) in the total region D. Thus, in general,

v. : C ÷ C I y + D "_ +• z i-lYi-I i+ i+l i-l"i-I Di+lYi*l

vf : Cf +Cf
• z z-lYi-l. 1+lYi+l + D[ .lYi.!

• h

+ Dl÷lYi+ [

(III -6)

where Yi vf are the nodal value and its derivative at

the midpoint of a given subregion, and other v's in the

Equation (111-6) are the boundary values given in Equa-

tion (Ill-S). The assembly of all the expressiohs for

all nodes can then be expressed in matrix form. The

system of algebraic equations can now be solved numeri-

cally as in the finite difference method to _ive the nu-

merical solution of the tctal oroblem.
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There is an essential difference between the FA method

just described, and the other numerical schemes, such as

the FD method and the FE method. In the FD method, the

relation between yp and its neighboring points YN' and

is not obtained from the analytic solution of theYS

differential equation, but from the difference formula or

from the truncated Taylor series expansion of the

dependent variable about its neighboring points. On the

other hand, the FE method assumes an approximated

functional form, normally some polynomial of a lower

degree, say up to the Sth or 6th degree to reFresent the

solution and uses the variational or Gaierkin type of

integration on the differential equation to find the

relation between v and its neighboring points YN' and yS..p
in the following chapters, some typical second

order differential equations will be treated. Examples

are solved to illustrate the detailed solution procedure

o£ the _A method.
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FINITE ANALYTIC METHOD FOR A SECOND ORDER

BOUNDARY VALUE PROBLEM OF NONLINEAR

DIFFERENTIAL EQUATIONS

In this chapter, the FA method will be applied to

the boundary value problem of a nonlinear second order

ordinary differential equation.

IV-I. Derivation of FA Formula

Let us consider the nonlinear ordinary differential

equation of the form

v" * A(y' x) v',y, * B(y' v x) y = C(v' v x)

a _x <b (iV-l)

Subject to the boundary conditions

v(a) = ¢_i and y(b) = _2 [IV-Z)

If Equation (IV-l) is nonlinear or linear, but with

variable coefficients, then an analytic solution of Equa-

tions (IV-l) and (IV-2) is difficult to obtain. A numeri-

cal solution is then sought. The first step in applying

the FA method is to subdivide the total region into small

subre$ions as shown in Figure (IV-la). If the finite sub-

re_ions are small enough, the nonlinear term or the
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Figure IV-1 Problem Domain

(a) Total Region of the Problem

(b) A Typical Element
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variable coefficients can be made constant locally.

Thus, Equatiou (IV-l) can be written as:

y" + Ay' + By " C (IV-3)

where A, B and C are constants for each finite subregion

of 2h length. The solution of the Equation (IV-S) can

be readily obtained (21). The boundary conditions

for a typical element can be written as:

y(o) -- YS

vC2h) = YN

(Iv-_)

?

Depending on the magnitude of A" 4B, three different

cases of solution can be realized as follows:

I. A" - 4B< 0

In this case, the characteristic equation

9

n" ÷ A + B = 0
m

IV-B)

÷

has two imaginary' and distinct roots, p- lq,

and the solution is"

v = e px

where p =

q w

A
"r

-)

l B -A"

C
[C 1 Cos qx * C.. Sin qx] * g

(IV-6)

([V-6-I_

______L
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[ _, A" 4B = 0

In this case, the characteristic Equation (IV-_)

has two real and equal roots, m I = m X = m, and

the solution is:

v = (C I + Cox) emX + C• . _ (iv-7)

-A
where m = -_- (IV-7-1)

9

III. A" 4B < 0

In the third case, the characteristic Equation

(IV-a) has two real and distinct roots m I and

mo, and the solution is

C
v = ClemlX + C2e_-2x + [ (IV-8)

where
O

-A+ A'- 4B
ml = 2

-)

-A- A'-4B
m_ _

(IV-S-l)

C1 and C_. are constants to be determined using boundary

conditions (IV-a,) for each finite element of length lh.

Now, the FA formula for a typical element fer the above

cases will be found.

mp

=

-- %

Case I.

v = ePX[c1Cos qx "- C Sin qxl *
C

(IV-9_
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boundary conditions.

y(G) - z s y(zh) - YN

Substituting the boundary conditions into Equation (IV-6),

C

we have: C1 = Ys -

vN-v e2Phcos 2qh + _ (e2Phcos 2qh-l)
C_ = " "s (IV-i0)

- _p,
e" aSin 2qh

substituting Equations (IV-10) into Equation (IV-6),

one can find the analytic sol,ltion in the finite sub-

region in terms of the nodal value of y at the boundaries

of the finite line element. In particular, for v at

point p (x=h) yp, Equation (IV-6) reduces to the

following algebraic form:

, e "ph C r . ePh
ePh YS (2 YN +v = (_ Cos qhJ _" Cos' qh ) B "2 Cos qh• p

e -ph

_ Cos qh
-1) (IV-ll)

which can be written as

v = CsY " CNY N + C (]_V-12)"p S P

where

Dh C (Cs. CN i)
_ e" _ e -ph

Cs 2 Cos qh ' CN 2 Cos qh ' Cp -- _

(IV-13)
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Repeating the above procedure for the other two cases

we obtain the FA solution with similar forms as

2
Equation (IV-12), but for case II, (A - _B = 0)

C
CI=Y "g

YN " y { e2mh C 2mh)_ -g (L-e
C2 .... Zmh

2h e
(IV-14)

and therefore

mh -mh

= e__i_ CN _ e CCS 2 ' 2 '
c i)= g (Cs+C N"P

for the third case (A" - 4B > 0)

(zv-is)

2mlh CYS e - YN ÷ (l-e'ra2h)

CI --
e_m25 '_e2ml h

2mlh 2mlh )
YN Y S e - C(l-e

Co -
_ eT'm2h e"2ml h

(IV-16)

and thus

(_i'÷r,l_) he - i

C S = C S - ernl +-E_em2-t_ , C N - emlh+ern'2h ,

_ C

Cp - B" (Cs+CN-I)

(IV-l'}

As can be observed from the above equations, the general

form of the solution is:

CS>'S " v "- = C• p CNYN p
(IV- 13)



r ]

or more generally

28

Ci lYi I - v. * C " C. (IV-19)- - " I i+I/i+l 1

This equation is the finite analytic (FA) representation

of the original problem (IV-l), (IV-2), and can be solved

numerically by e!iminatiQn or iterative methods.

IV-2. Calculation of Derivatives

If the functions A(y',y,x) and B(y' ,y,x) in Equation

(IV-I) involve the derivative of the dependent variable

v', the derivative of y can be found simply by differen-

tinting the local analytic solution (IV'0) to (IV-8).

But the problem is still nonlinear; therefore, the .-.-olu-

tion procedure for the FA method involves an iterative

scheme. That is, it is necessary to renew the value of

the derivative v' as well as the function v in A and B

for each iteration until the difference of FA solution

for v between two iterations is small enough. To lineari-e

A(y',y,x) and B(y',y,x) with average value of v and v' over

each finite subregion requires the analytic solution of the

i derivative y' in addition to y. After local linearization

i of the coefficients A, B and C, the analvtic solution

I is found for Equation CIV-S). Derivatives of v can be



0;:!(...'-: [,i; " :3'
OF PC'..;,,' (J'SA,..li'lf

29

v' - pePX[elCos qx * C,Sin. qx]

p ll
÷ e [-qClSin qn + qC,Cos, qn] CIV-20)

and from Equation (IV-8)

v' = Clmlem!X + C.:n.e m'x tlV-21)

Fhe constants C l and C,. for case I are given in Equation

t[V-9), for case [[ in Equation tI\'-141, and for Case I

in Equation llV-lo).

Since the approximation [5 ever the interval, the

avera,¢e value of v and v' shoul3 be found for each

finite subregion. For this purpose, one can use the

Simpscn's integration formula i. e.

N

_S ,vdx

average v =

h

_'(vS*av-, E+\ N
= -• _l

t
g l\'q+¢vp*vN

IV- '2

_tnila,",v for the ,!eriv,tt_ve

1
• _ V ' • { \" ' i" IV ' +'," ' _

,tver:t .t _'( >; "' X '
a

IV- "3
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IV-3. Calculation of Derivatives at the Boundaries

x = a, x = b

Equations (IV-20)tD (IV-22) give the value of

derivative of the function in every point in the sub-

region of length 2h. The nodal values of the derivative

of the function are needed at the beginning of each

iteration. For x - a and x = b, the same equations

are used, but the coefficients of the equations would

be the same as the coefficients of their neighboring

points because they both belong to the same interval.

Therefore, _e can write the solution as follows"

Case (I)

v'(a) pe pa ÷C,Sin qa]= [ClCOS qa

* ePa[-qClSin qa*qd.Cos_ qa]

Case (II)

v'(a) = C_ema_ * (Cl+C2a)me
ma

Case 11[)

+ C .m_e m_a
v _a = Cln I

The same procedure may be used for x = b as _-nown in

Figure I, IV-2).



OF POOR QUALITY

i

[" L ,",', t'_"

_'L+-j.
.... j_

,_:t_! t,,t>t !ttt',.'__,+tt<

t t";, + I t', ,"_' t"\' ,_ t

,t.-,t tt_t_.,t,,,tI

+_,_I ++,



ORIGINAL PKG."."[_J

OF POOR QUALITY 32

Procedure for FA solution of Equation (IV-l), therefore,

consists of the following steps:

Step I. Local Linearization

The first step of the FA method is to subdivide

the problem region into many subregions. In each

region, the nonlinear terms are linearized and then

each term is approximated

The constant represents an average of the variable

coefficient in the subregion. The FA solution

given in Equation (IV-19) is used in the calculations.

Step 2. The Initial Profile

As shown in Equation (IV-19) the FA method is

an implicit method. If the equation is nonlinear,

an initial guessed solution is needed to start

the iteration, so that a better approximation for

the nonlinear terms can be made. One simple choice

for the initial iteration is the line joining the

two boundary points v(a), y(b) at two ends of the

total region (a,b). Another choice is a second

order polynomial passing through the two end points

and one mid point.

Step 3. Coefficient Tabulation

This step is to find the FA coefficients _iren

in Equation !IV-I_, usin_ Eqations ,[_,'-13_ to

_IV-I').
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Step 4. FA Solution

In this step, the system of linear algebraic

Equations (IV-19) is solved by the elimination

Step 5. Iteration

The new and old values of the function at each

node are now compared. If the discrepancies are in

the desired range, the converged solution is

obtained. If not, the procedure is repeated

again from Step 2. But, instead of using the initial

profile, the calculated nodal values of the function

and its derivative are used as new values to

evaluate A and B. At this stage, if needed,

the following over (under) relaxation parameter

may be used. Let Yj+! and Y'j*I be the new nodal

value of the function and its derivative just

obtained from the calculation. Then we have:

vj+ 1 = v. ÷ y(y v )• "] j+l "j

"r > i over relaxation

"r < I under relaxation

j = 0,I,_. is the iteration i-_

Similarly , the over and under relaxation

scheme for the derivative can be written as

v' = v' _" "_1"'' v. t
•i-I j-i ;,

i

',here vi_'l and , i-i
are over relaxed or under
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relaxed values of the function and its derivative

to be used in the next calculation. The flow chart

for the abo_-e five steps is shown in Figure (IV-3).
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Step i

Step 2

Step 3

S_-__p

Linearize the nonlinear terms or

complicated coefficients .k 6 B in

variable v" + Av' + B.v -- C

Guess the initial profile v
"O

satisfyin_ the boundary conditions

!

Find the coefficients of the

Equation (IV-19)
C. C C
z-1' i' i_l

+
Solve Equation LIV-19] bv

tridiagonal method and find
new values for v

I
_tmder or overj,f

Print out the final sehltion

FLgure P,-3. F.\ FIo, Chart
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In this chapter, some examples of FA solutions are

considered. All examples chosen have a known solution

so that the FA solutions may be compared not only with

the finite difference solution or other numerical

solutions, but also with the exact solution.

V-I. Linear Equation with Variable Coefficients

Consider the ordinary differential equation

O

v" + 4xy' + 2(I+2x _) v = 0 (V-I)

subject to boundary conditions

x = 0 y = 0
-,_)

x = 1 v = i

The analytic solution for this equation is v = xe
-x *1

In order to apply the FA method to Equation (V-L),

it is rewritten in the standard FA form as given in

Equation (IV-S), .where the values of A, B and C for

each ¢lement of Length lh is obtained by taking

the integral average of the variable coefficient over

that interval respectively. For example, ',hen xi. is

the center node o: the =inite element,
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Since three nodal values are available, a Simpson's

closed interval formula gives"

A ! + ¢A. + Ai. I)= _ (Ai-1 l

where A. = 4x.
1 1

Similarly, for B

_i÷l x2
.i.12(I+2, )dx I

B - '2h = O (Bi-I

"9
z_

. = 2(I+2xi)where B l

+4Bi+Bi+ I)

The coefficient C is zero in this example.

Once the values of A, B and C are determined for

each interval of length 2h, the coefficients of the

finite analytic equation (IV-17) can be obtained using

Equations (IV-6) to (IV-16) as

Ci lYi I - v. + C ly = C. (IV-I e)- - "I i+ i_l I

The _ystem of algebraic equations (IV-19) can now

be solved numerically by elimination method to provide

the FA solution of Equation (V-I).

Table (V-I) shows the FA solution and the numerical

solutions obtained from FD and shooting meti_ods in

addition to the ana!vt;-• .c solution. All numerical

calculations in the table IV-l% are made with an increment



Table V-I

,Numerical Solutions of Equation (V-I) VS the Analytic Solution

x

0.0

0.I

0.2

0.3

0.4

0.5

0.6

0.7

u.8

0.9

1.0

Time
Used

Exact

0.0

0.26912

0.52233

0.74529

0.92654

1.05850

1.13788

1.16570

1.14666

1.08832

1.0000

FD

0.0

0.26918

0.522450

0.74554

0.92673

1.058699

1.138081

1.16587

1.14678

1.038839

1.0

|

FA

0.0

0.26913

0.52236

0.74532

0.92658

1.05853

1.13792

1.16573

1.14668

1.08833

1.0

i , i i |, ,

Shooting

0.0

0.26912

0.52.234

0.74530

0.9265S

1.05850

I.13%'89

1.16571

1.14668

1.08833

1.0

5.537SRU 7. S54SRU 8.113SRU

38
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interval of h = 0.02 which gives S0 intervals in the

solution domain. The FD solution with 50 intervals is

also obtained using the following finite difference

equation:

Yi+l-2V. +v. Yi -v.• I • i-i ÷i " l-I o
0. + _x. ÷ 2(i÷2x?) v. = 0

h" x 2h i "i

The shooting method solutions using a fourth order

Runge-Kutta integration scheme are also obtained in

Table (V-I). The tabulated values are after 1O shootings.

Comparison of different solutions in Table (V-I),

shows that the finite analytic solution is definitely

better than the finite difference solution, while the

shooting method, which is based on integration of the

equation using an accurate fourth order Runge-Kutta

algorithm, gives slightly better solutions than the

finite analytic solution. However, it is found that if

the missing initial condition is changed slightly, the

solution does not converge to the exact solution. Also,

since an initial condition has to be guessed, the problem

involves iteration. For this problem with the exact

missing condition, convergence is achieved after i0

iterations. For the interval si:e of h = 0.02, the

time used in three cases are also listed in the table.

The procedure for finding the missing initial conditions

starts wi=h guessing two different initial conditions
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and finding their corresponding boundary values. If these

values are dif±erent from the prescribed boundary condi-

tion, another initial condition is guessed using linear

interpolation. This procedure can be repeated by using

another linear or perhaps a quadratic or higher order

interpelation to produce a sequence of new values for the

missing initial condition until a selected assumed value

of the initial condition produces the boundary value

solution as accurately as desired.

Table (V-2) shows the effect of grid size on the

accuracy of the FD and FA solutions, and Table eV-3) is

an indication of the error of the predicted solution

at x = 0.4, produced by each method. Note that for

small grid size, both methods yield good results. How-

ever, as the grid size becomes larger, the finite

difference solution shows more error than the FA solution.

This example shows that the FA solution is less sensitive

to the interval size. All three methods used for this

problem are stable, which is due to the linearity of

the equation.

V-2. Nonlinear Ordinary Differential Equation I

As a second example, we consider the following

nonlinear differential equation:

yy" ÷ v'- = 0 (V-3)
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Table V-2

Comparison of Numerical Solution of

Equation {V-I) using the FD and FA Methods

41

0.0

0.2

0.4

0.5

0.6

0.8

1.0

0.02

0.0

0.5224

0.9267

1.1380

! .1467

1.0

0,I

0.0

0.5251

0.9312

1.1427

1.1497

1.0

0.2

0.0

0.5336

0.9456

1.1578

1.1593

1.0

0.5

0.0

1.2

1.0

Finite Difference

Exact

0.0

0.5223

0.9265

1.0585

1.1378

1.1466

1.0

0.0

0.2

0.4

0.5

0.6

0.8

1.0

0.02

0.0

0.5223

0.9265

1.1379

1.1455

1.0

0.I

0.0

0.5229

0.9274

i.1387

1.1471

1.0

0.2

0.0

0,5246

0,9300

1.1411

1.1485

1.0

0.5

0.0

1.0821

1.0

Exact

0.0

0.5223

0.9265

1.0585

1.1398

1.146@

1.0

"'Finite Analyt i¢
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FD

Table V- 3

Comparison of % error of the Numerical Solution

of Equation (V-I) for F.\and FD ,\_.thodsat Point .x_0.4

% Error

0.00

0.019

O.i

% Error

0.114

O.S3,)

._

% Error

O. 44

2. Io

O. S

",,, Error

13.42
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subject to boundary conditions

y(O) = 0 y(2) = 2 (V-4)

We note that Equation (V-3) is singular at x =0 because

of the boundary condition y(0) = O.

V-2-1. FA Solution

In order to apply the FA method, the nonlinear

terms Equation (V-3) are first linearized in a finite

interval of length 2h by its integral average as

43

yy" + = o (v-s)

where
°

" l+l

Xi_lY'dx

2h

and

V

xi+ 1
f

"xi__ydx

2h

The linearization in effect eliminates the singularity

at x = 0 since the integral average of v has replaced

the function v in tile first 2h interval of Equation (V-_].

Equation (V-3) can now be written as:

Comparing Equation i.V-6) with the FA standard form

Equation (IV-3;, _e have

t

A : _-- , B -- '_.._. , C -- O.O
j.

To find the finite anal'.'tlc solution o: Eduation ,V--",

an iteration bet'.,een the function v in the lineari-ed
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coefficient A given in Equatiom (V-7) and the solution

must be made. To conduct an iterative procedure, an

initial profile for y over the whole region is first

required. As mentioned in Chapter IV, a simple choice

for the initial profile is the profile that satisfies

the boundary condition at y(0) = 0, and v(2) = 2, e.g.

the line v = x The initial profile for v' is obtained

by differentiating the initial profile for y, that is

V' = 1

Once the coefficients A, B, and C are known for each

finite subregion, the locally linearized differential

equation can be solved analytically for each interval.

Once the new or improved solution for v and v' at each

node are obtained, the values of y and y' for each

interval of length 2h can be updated using Equations

(IV-°!), (IV-23) or

V. *4v +v
" "!-I ' i 'i*l
V . :E

l 6

(V-8 _
V f. ÷_.t. _.V_.

_,.= • I-I 'l ' i+i
• i 6

_'_ ' i' v.._ are the average '.'_lues of the function and

its derivative over an inter_al of length 2h wkere tke

_idpoint is the ith node• Substitution of Equation IV-3'

into Equation !V-S) _ives the new iterative values for

A B, and C l'his _"oce!'a -_ is re_eated until "h =

convergence is ._chieved in a desired range.
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The analytic solution for Equation (V-4) is

v" = 2x (V-g)

differentiating Equation (V-9)

1
V i z

2x

which is infinity x = 0. Therefore, the shooting

method cannot be used for this problem because, no matter

how large the missin,_ initial condition is taken, it wil. 1

never converge to the exact value. Thus, for this problem

the FA solution ",'ill be compared with the FD solutions

Fables I.V-5 and {.V-o_! and the exact solution. [able

V-a t ) shows the results for h = O.OS. The number of

terations for both methods is 8.

\-2-I. Interval Average approximation VS Quasi-

linearization

This technique _,hich is used for lineari:ing the

nonlinear terms of the differential equation is based

on replacing the nonlinear terms by the integral average

of their values over each finite subregion. Hob, ever,

as mentioned Ln Chapter jr, the ,_uasilineari:ation

technique consider the nonlinear second order ordinar."

differential equation

,:,e fuac_i_:_ f c:ln he expanded :n T,l"tor series .lr:,und
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Table V-4

Numerical Solutions of Equation (V-3)

the E._3ct Solution with 0.05

VS

X

0.0

0.2

0.4

0.6

0.8

1.00

1.2

1.4

1.6

1.8

2.00

Exact

0.00

0.632

0.894

1.095

1.264

1.414

1.349

i.673

i.788

I .89"

2.CO0

FA

h:O.05

"0.00

0.629

0.892

I.094

1.264

1.413

1.348

i.673

1. "88

1.89"

Z.O00

h:O.05

0.00

0.638

0.898

I.098

I.266

I ._15

1.550

1.674

1.789

1.39"

I.OCO

No. Of

Iterations



Of P.OCI_ _GAI_II_

Table V- 5

Comparison of Numerical Solution of Equation (Y-3) using

the FD and the FA Methods with Varying Grid Sizes

0.0

0.4

0.8

1.2

1.6

2.0

No. of

[teration

O.OS

0.0

0.898

I.266

1.550

1.789

2.00

Q

0.I

0.0

O.901

1.268

1.551

1.789

2.00

S

0 _,W

0.0

i

0.907

I.Z72

I.$53

1.790

2.00

0.4

0.0

0.9Z3

1.277

1.556

1.792

2.00

Finlte Difference

Exact

0.0

0,894

I.264

1.549

1. 753

2.00

0.0

0._

0.3

1.2

1.6

2.0

ternti_r

0.0S

0.0

0.$92

0.i 0.2

0.0

0.886

O. -_

0.0

0.870

1.26_

1.348

1.788

2.0

1.263

i.548

!.7B8

1.261

l.S_"

i. "38

2.0

Finite Analytic

I.ZS6

l.Saa

i."87

2.0

i .264

1.5.$9

i,7S8

.'.O
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Table V-6

Comparison of % Error of the Numerical Solution of Equation

(V-3) for the FA and FD _Mthods at x--0.8

FA

FD

0.0S

Error

0.01

0.1S

0.i

% Error

0.08

O.31

Error

0.23

0.63

Error

0.63

1.03
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a given function To(X) and its derivativative Yo(X).

Thus,

f(Y,Y') = fCYoCX), YoCX)) + (y (x) - >-oCX))

(v1!)

Substituting Equation (V-ll) into Equation (V-IO), we

have

"'(x)) + (y'(x) - v'Cx))v,, = f().o(X) ' Yo o "o

(V-l:)

which is a linear equation.

Applying this technique to Equation (V-3),

V v4-

v' = _-= f(y v')
• >, J .

Vw _-

_ = o ÷ (_' (x)
• V

"0

-)

V v'-

Vo (x)) (.22_)
V
0

-2y'

V'.o(x)) (@P-) +cv..(x)
'0

.OF
'0

0

_,. v I"X) w-

Vt _,
'0

0

;iy (x)

or V" @ '0 _, t

V
'0

"3

0
= 0

0
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for which

2V' V 'Z
"O "O

A=_,B=
V " _ )

'o Yo

C-- 0

Table (V-7) shows the comparison between quasilineari-

zation and interval average approximation for h = 0.I.

The table shows that for this problem the interval average

approximation gives more accurate results.

From Table (V-S) we see that the number of iterations

are about the same for both finite difference and finite

analytic method, and vary between 8 iterations for h = 0.05

to 5 iterations for h = 0.4.

Again, more accurate results are obtained with a smal-

ler grid size. The finite analytic solution again proves

to be more accurate than the finite difference solution

for all grid si-es as shown in Table fV-6) where the

solution is compared at x = 0.8.

V-3. Nonlinear @rdinary Differential Equation l[

As the next example, consider another nonlinear

iifferential equation:

v" = e" (V-13

with the boundary conditions

,,',',)) = v:1) : 0 ,V- !J,

_ be fore, the nonlinear term :Tust he
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Table V- 7

Comparison of Interval Average .Approximation

and Quasilinearization (b)

a b

0.0

0.4

0.8

1.2

1.6

2.0

?,L_ximum

Error

V

0.0

0.890

1.263

I.548

1.788

2.00

0.22%

Y

0.0

0.862

i.248

I.540

I.78_

2.O0

3.36%

(a)
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locally linearized. In order to write Equation (V-13)

in the standard form, we consider the small subregion as

shown below

h

h

k____
S

In this small subregion, the nonlinear term which is

the exponential term, can be expanded about the ooint (5).

Therefore

V _v_

ey = 6 p + (y-yp) 4 p + ...... (V-IS)

Approximation of Equation (V-IS) is known as quasi-

lineari=ation (17) substituting Equation (%:-15) into

Equation (V-13), one has the locally linearized equation.

V v

v" - e'Pv = e' p(l-yp) (V-16)

Comparing Equation (V-16) _rith Equation (IV-3) gives

Yp YD
A = O, B = - e , C = e (1-y_)

Equations(V-13) and (V-14) have an analytic solution

- -lo : - : lo " sec(g(x-$))]

where C - 1.5360S5-

This equation has been solved bv many authors (18),

i 21 ). A_ain, to impliment this iterative procedure, an
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initial guessed solution is needed. X simple choice

could be a polynomial that satisfies the boundary

conditions y(0) = y(1) = 0 or y + x(x-l). Numerical

solutions of (V-13) are compared with the exact solution

in Table (V-8).

Both FA and FD methods with a grid size of h give

good results after 2 iterations up to 5 decimal points.

The time used for both methods is the same (about 3 SRU).

But, when the length of the finite subregion is increased,

the FA method gives more accurate results than the FD me-

thod. In the shooting method, if the exact missing ini-

tial condition is not guessed, convergence cannot be

achieved. The sensitivity of the solution to the missing

initial condition can be demonstrated. For example, even

when the missing initial condition is guessed correctly

to three decimal points, ten iterations (shooting) is

needed before convergence occurs, and the solution still

has errors as can be seen from Table (V-8). Generally

speaking, the FA method, FD method and shooting method

give close results when the step size is small provided

a good initial guess is used for the shooting method.

The error grows when the step size increases, i.e. less

number of points is used. Table (V-9) shows the effect

of step size (h) on the numerical solution of Equation

(V-13). Table (V-9) shows that for this problem, using

the finite difference method, the error _ro_s when the
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Table V-8

Comparison of Numerical Solutions of Equation

for h=O. 02

(v-13)

54

X

I

0.0

0.i

0.2

0.3

0.4

0.S

0.6

0.7

0.8

0.9

1.0

11teratlo]

or

Shooting

Anal wtic

_0. 0000

FA

0.0000

FD

0.0000

Shoot_g

0.0000

-0.04143

-0.07326

-0.09580

-0.i09238

-0.I13704

-0.109238

-0.09580

-0.07326

-0.04143

0.0000

S'

-0.04143

-0.07326

-0.09579

-0.109237

-0.113703

-0.109237

-0.09579

-0.07326

-0.04143

0.0000

-0.04193

-0.87326

-0.09579

-0.i0923

-0.I13702

-0.109234

-0.09579

-0.07326

-0.04144

0.0000

-0.04142

-0.07324

-0.09575

-0.i0918

-0.i1363

-0.10915

-0.09570

-0.07315

-0.04130

0.0000

i0
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Table V-9

Comparison of Numerical Solutions

the FD, FA and Shooting Methods

of Equation

for Varying

(V-13) using

Grid Sizes

0.0

0.4

0.8

1.00

0.02

0.0

-0.I092

-0.0732

0.000

0.0S

0.0

-.i092

-0.732

0.000

0.I

0.0

.1091

-0.0731

0.000

i

0.0

O.-I

0.8

1.0

m

FD Method

0.02

0.00

-0.1089

-0.0727

0.000

0.0S

0.00

-0.I089

-0.0727

0.000

Shooting

O. 0

O. 4

0.8

i. O0

0.02

0.00

-0.1092

-0.0732

0.000

O. 05

0.00

-0. 1092

-0.0732

O. &)O

0.2

0.0

-0.i088

-0.0730

O. 000

(2 iterations)

0.1

0.00

-0.1089

-0. {)727

0.000

Method (i0

0.1

0.00

-0. 1092

- N "_'_O, . /,3,'

O. ',)Of}

_terations]

0.2

0.00

-0.1089

-0.0727

O.OOO

Shoot ings)

Exact

0.0

-0. 1092

-0.0732

0.0

FA _lethod (2

Exact

O. 2

O. O0

- O. 1092

-0. {]732

O. 0{]0

O. 0

-0.i092

-0.0732

0.0

Fxac t

O. 0

-0.1092

-0.0732

O. 0

w -

aD
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step size becomes larger. The results of the FA method

interestingly remains the same for different step sizes

as shown in Table (V-9), which shows that the FA solution

is insensitive to the step size and gives more accurate

solutions than the shooting method. As for the shooting

method, an almost exact initial condition must be used,

otherwise, the solution is unstable and does not converge

to the exact solution. For the FA or FD methods, be-

cause of the nonlinearity of the differential equation,

the solution procedure requires an iterative process.

However, the solution converges with the simple initial

profile that is made only to satisfy the boundary condi-

tions. This comparison shows clearly the advantages of

the FA method over other methods, especially in the sense

of simplicity of the theoretical approach.

Table (V-10) shows the effects of grid si:e on the

error produced by using the FA, FD, and shooting method

solutions of Equation (V-9). Again, it is obvious that

the FA method produces less error than the FD and shooting

solutions. Also, it is interesting that the FA solution

for this problem is almost insensitive to the grid size.
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Table V- I 0

Comparison of % Error (at x=0.8) of the Numerical Solution

of Equation (V-13) for FA, FD, and Shooting Methods

h 0.0Z 0.0S 0.I 0.2

X

FA

FD

Shooting

% Error

0,01

0.01

0.68

% Error

0.01

0.01S

0.68

% Error

0.01

0.136

0.68

Error

O. 01

0.27

0.68
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CHAPTER VI

APPLICATION OF FINITE ANALYTIC (FA)

METHOD TO FLUID MECHANICS

VI-I. Falkner-$kan Equation

Boundary value problems occur in many fluid mechanics

and heat transfer problems. One of the most important

problems of this kind is the steady two-dimensional flow

of a viscous fluid past a wedge. The problem is to find

the velocity profile in the region close to the plate,

known as boundary layer (14). The governing equation of

the problem is known as the Falkner-Skan equation, wkich

is obtained by similarity transformation from the boundary

layer equation) and is given as

f''' + ff" ÷ _(l-f'') = 0 (VI-I)

Here f is the dimensionless stream function, derivatives

of f are taken with respect to the independent similarity

variable _, and _ is a _arameter of the eauation that

signifies different flow geometries or pressure _radient

exerted on the boundary. B > 0 denotes the flo_ is under a

favorable pressure _radient and _,) under _n adverse pressure

_radient. The boundary conditions of this flow problem _re"

- O, f - ) - - O, f' = 0 - -_ ,.' - I

(_'I.l' l
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VI-2. The FA Solution

For numerical treatment, the infinite boundary

condition n _ _ in Equation (V-2) is replaced by a

sufficiently large finite boundary n _ n®. Then the line

n can be subdivided into small line segments [Figure (VI-I)).

To implement the FA method, the nonlinear equation (VI-I)

is first linearized locally. In order to cast the linearized

equation in a form similar to Equation (IV-S), Equation

(VI-I) is rewritten in the following form:

f',' + f f" - _f' f' = E (VI-3)
O O

i

where f and f' are the average values of f and f' over
O O

the finite subregion of length 2h. Therefore, in the

standard form of Equation CIV-S)

A = f , B :,-e,f' , C = -_ CVI--),)
O O

Let f' = g

Thus, Equation (VI-3) becomes

(VI -5_,

g" + Ag' "_ Bg = C

= 0, ) = l

which can be solved numerically for g in each small

subregion. Since this p blcm is nonlinear, the numerical

solution a_ain requires an iterat:ve procedure with an

initial profile of _ _atisf','in_ both boundary conditions.
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iN

i÷l

i-I

i=l

Figure V[-I.

f' (®)=i

T
h

h

J_

i
f(O)=O,f'(O)=O

(a)

Schematic Diagram of Problem

(a) The lqhole Region

(b) A Typical Subregion

f t

N

f_

J.

S

N

S

(b)
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Once new values g at each nodal point are

calculated, the new values B are known for each node.

5ut, for calculation of A, new values for f need to be

calculated. From Equation (VI-7) is is obvious that

df

thus

P P

fp fs =7 df =f gd (Vl-8)
S

where s and p are southern and middle points of an

interval of length 2h, as shown in Figure (VI-I). As

discussed in Chapter IV, the solution for dependent varia-

ble g in Equation (IV-S) has three different cases accord-

9

ing to the value of A 2 4B. Therefore, for A" 4B < 0

f
P

eph

fS ÷ C1 _ [pCos qh + qSin qh] ÷
p ÷q

eph
÷ C_ _ [pSin qh - qCos qh]

p ÷q

=

D

C1 P C_q C

p-÷q - p-+q-

;V[ -9)

which is simpl>" the integration of Equation fVI-B).

Similarly, for A" _B = O,
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Cv (emh c2emh
fp = fs '+" (m_--_"- +_'_) -1) ",- ('--"m"--

?

and for A" 4B > 0,

(VI -I0)

= __elem2h __C2

fp fs + m I + m2 emoh. + BC CVI-II)

Values of A and B are the average values of initially

guessed f and f' over each finite subregion of length

lb. Therefore, A and B can be obtained using Simpson's

integration formula

'+4f_+f'+f fs N
fs +4fp N B = -

A -- 6 ' 6 (VI -I_)

Any initial profile should satisfy both boundary conditions

g(0) = O, g(,==) -- i. If the _= is taken to be i0.

Z

a simple initial profile is taken as go 0.i.

Thus

/dr - r O.lqdn (VI-!3)

O O ,_

or the guessed f profile becomes f = 0.5 n"

The calculation of the FA method, thus oroceeds with

Equation (VI-131 as initial _uess.

Since there is no analytic solution to Equation (VI-I),

the FA solution is compared only with the shootin_ method,

which is the most popular technique for solvin_ the

Falkne_-Skan flow problems ( " ). Table i'Vl-l)

shows the _,umerical solution of Equation I'.'l-l) for
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Table VI- 1

Velocity Profile for the Falkmer-Skan

Equation using FA ._thod

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

L
I s.o

9.0

t
I LO.O

i
!

-0.1988 -0.18 0.00 O.S 1.00

'L • " '

0.0

O. I000

O,3818

0,729

0.9404

0.994

0.999

0.999

l.O00

0.0

0.2163

0.5617

0.860

0.979

0.998

O.999

1.000

0,0

0,4609

0,316

O. 969

0,997

O. 999

1.000

0.0

0.6815

0.442

0.995

0.999

0.999

1.000

0.0

0.7783

0.973

0.998

0.999

1.000

i.000
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different values of B(-0.1988<8<1). Equation (VI-2)

shows that the domain of problem is (0-®), which cannot

be treated by any regular method of solving boundary

value problems. In order to satisfy the boundary

condition at infinity, it is assumed that for this

problem _ = _, f' - i. Therefore, the infinite boundary

condition is replaced by a finite boundary. For example,

_ = i0, f' = i. The value of I0 may be replaced by

other values if the numerical solution does not

asymptotically approach f' ÷ i. Table (VI-2) shows the

comparison between the interval average approximation and

quasilinearization. The quasilinearization process for

the Falkner-Skan equation can be done as follows:

f''' * ff" * _(l-f '2) -- 0

g" * fo g' + S(1-g") = 0 (VI-14)

therefore, y(g',g) -- - fog' - _(1-g2).

Using Equation (V-l_), and simplifying

for which A * fo' B = - 2Sg o, C-- S(l÷go). As can be seen

from Table (VI- 2), numerical results are almest identical.

However, quasilinearization conver_es faster than the

interval average approximation by an order of 2.
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Table VI-2

Comparison of Numerical Solution of the Falkner-Skan

Equation using Shooting and FA _thods for S=0.0

65

0.0

2.0

4.0

6.0

8.0

i0.0

0.i

0.00

0.816

0.997

0.999

1.000

1.000

0.4696

Velocity

0.S

0.00

0.826

I. 006

1.009

0.009

0.999

0._76

Profile using

1.0 I.S

UN:;TABLE .......

Shooting Method

0.0

2.0

1.0

6.0

8.0

I0.0

0.i

0.00

0.8168

0.99 _

0.999

1.000

1.000

0.5 1.0

i, m , i

i.5 2.0

0.00

0.8Z_6

0.998

1.000

1.000

1.000

0.00

0.849

0._98

1.000

1.000

1.000

0.00 0.00

0.9488

0.999

1.000

1.000

1.000

i

f",0j O. 1699 ').1,3- 0.199

b. ',elocitv Profile usiP,_ FA ).Iethod
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VI-3. Numerical Results

The FA numerical results of Table (VI-I) are

obtained for h = 0.I. The FA solutions are identical to

those obtained by the shooting method to the third digit.

Tables (VI-_) and (VI-4) show a comparison of the FA method

and the shooting method. The comparison indicates that the

FA method is more stable for this problem.

Equation (VI-I) was derived first 0y Falkner and

Skan ( 23 ) and was calculated later numerically by

Hartree tZ4). L'er since, because of strong nonlinearity

of Equation (VI-1j its solution has been a challen_e to

many mathematicians as well as engineers. Stewartson (25]

found that when S <- 0.1981, there are two acceptable

solutions, one with f"(0)<0. In addition, he showed that

if -0.5<3<0, there is a family of solutions corresponding

to boundary layer bounded on one side by free streamlines.

Later, in 1966, Libby and hiu (2@) suggested a point of

view and a mechanism making the similarity solutions for

B<-0.1988 physically acceptable, and presented some of

the solutions. The numerical analysis that Libby and

hiu used is based on the application of the quasilineari-

zation technique developed by Bellman and Kalaba I18) in

approximatinz the governing Falkner-Skan equation. In

addition, the boundary condition at infinity is treated by

requiring that exponential Jecav is assured, in

their method, instead of specifvin_ _ and
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-T_ableVI -3

Comparison of Numerical Solution of the Falkner-Skan Equation

using Shooting and FA >_thods for 6-I.0

0.0

1.0

2.0

3.0

4.0

6.0

f'(0)

0.i

0.0

0. _17,8

0.9732

0.9984

0.9999

1.0000

1.2326

a.

0.S
, ! • ,

0.0

0.7769

0.9722

0.9980

0.9999

1.0000

1.2318

Vel oci ty

1.0

UNS IABLE ...... I ....

Profi)e using Shooting ._thod

2.0

0.0

1.0

2.0

3.0

4.0

6.0

f" (o)

.1

0.0

0. 7783

0.9733

0.9984

0 9999

1.000

1.2345

0,5

0.0

O. 7916

0.9773

0.9988

O. 9999

1.000

1.291"

1.0

0.0

0.838

0.9897

0.999

i.000

I.000

L.

I -$994

1.5

0.0

0.9963

1.000

i .870"

b. Velocity Profile us:n_ FD .Method

2.0
n
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Table-YI-4

Co,@arison of Quasilineariza_ion and Interval

Average _thod for 3=0,&N =0.I

0.0

1.0

" 0

3.0

4.0

5.0

6.0

t.0

8.0

Number o£

rtera_ions,

Quasi

0.0

0.4609

0.816

I 0.969

I
_ 0.9977

0.999

1.000

1.000

1.000

Velocity Profi

Average

0.0

0.4609

0.816

0.969

0.9977

0.999

1.000

I.000

I ,000

8

O
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seeking f"(0) so that f'(=) = I, f"(0) is specified and

is considered as a parameter to be determined in each

iteration cycle of the quasilinearization scheme.

In the FA method, we have not imposed any condition

in the exponential behavior as n _ =. For the values of

6>-0.1988, replacing the boundary conditions at infinity

by a finite large distance from the wall seems to be

satisfactory, and yields good results. However, for

B<-0.1988, this substitution is unlikely to succeed, and

the solutions obtained do not behave exponentially, i.e.

the numerical scheme works as if the outer boundary were a

fixed wall. The problem with a boundary condition at

infinity was studied by Robertson (27), who con-

sidered the linear two point boundary value problem on an

infinite interval. In his study, a numerical methcd, using

a finite difference approximation to the second order

differential equation is given which tests the suitability

of the finite point chosen to represent infinity.

In Robertson's study, the length of the finite interval

is calculated such that the replacement of this finite

interval for the infinite interval would give solutions

with desired accuracy. However, the analysis is only for

linear equations. For nonlinear problems, one has to

examine the existence and uniqueness of the sol_tion, a

subiect which has not been fully developed yet.

Keller (28) is studvin_ the existance and uniqueness of the
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solution of two point bcundary value problems

h(y) =-Y" ÷ p(x)y' ÷ q(x)y _ f(x) has proved that the

existence and uniqueness is guaranteed only if p, q, f

ar_ continuous with q > 0. Therefore, the Falkner-Skan

problem, even when it is linearized, may not have a

solution if the parameter _ is such that the value of

q is not positive. The application of the FA method to the

Falkner-Skan problem for values of B must be studied

carefully, and can be _ subject for further investigation.

For 8 > 0, the FA solution produces satisfactory solution.

|

i

mp
!
B
D
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CONCLUSIONS AND RECO_NENDATIONS

111 the present work, the idea of the finite analytic

method introduced by Chen and Li, (_) is developed and

extended to the solution of linear and nonlinear two

point boundary value problems. In general, the FA method

is better than the finite difference method for examples

treated. In particular, the FA method has the following

advantages: it is relatively insensitive to the grid size,

more accurate since truncation errors are eliminated or

minimized, and more stable. In addition, the FA method,

because of its continuous functional solutions in the

finite subregion is differentiable. This is a great

advantage over other methods, since approximation of

derivatives by finite difference or finite element

formulae, in general, introduce additional errors in

addition to the errors already made in the solution.

In the case of nonlinear boundary value prcblems,

since the equation is nonlinear, both FA and FD methods

require linearization. In the present study, the non-

linear term has been replaced by a constant equal to its

integral average in each finite subregion. If the finite

subregion is small, this approximation is indeed very

good. For large subintervals, the approximation will



produce some error. However, it is generally less than

the error produced by a finite difference method. On

the other hand, any second order nonlinear ordinary

differential equation can be locally linearized. In the

FA method, they are locally cast into a linear second

order equation with constant coefficients. Therefore, the

FA solution does not require much analytical work and can

be implimented easily. Replacing the nonlinear term by a

constant is the simplest kind of approximation.

Obviously, this approximation can be improved by using

a polynomial of arbitrary degree as in approximation of

the function in each finite subregion. This will improve

the accuracy of the FA solutions, but requires more

analytical work, and could be a subject for future

development of the FA method. A very important feature

of the FA method is its stability as compared to the FD

method and shooting method. This advantage can be seen in

Chapter VI where a comparison is made between the FA

method and shooting method for different grid si:es.

The implimentation of the FA method irvolves a

relatively simple numerical al_orithm compared with that

used in existing methods in solvin_ boundary value

problems. The principle of the FA method is very simple

and the analytic part of the method consists only of

solvinB a linear second order ordinary differential

equation with constant coefficients.
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THE FINITE ANALYTIC SOLUTION OF A

NONLINEAR SECONDORDERORDINARY

DIFFERENTIAL EQUATION
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1

CHAPTER I

INTRODUCTI ON

Many initial value or boundary value problems, in an

engineering process may involve complex material properties,

complex geometry and boundary conditions and defy the

analytic solution. Engineers thus resort to numerical

methods to obtain approximate, but acceptable, values of

the unknown quantities to a discrete number of points in

the region. There are already many established numerical

methods available for solving ordinary differential equa-

tions (ODE) and partial differential equations (PDE).

Finite difference and finite element methods are perhaps

the most widely used numerical solution schemes. Generally,

in a numerical method the entire problem is broken up into

smaller subregions or elements in which discrete points or

values are defined. A system of algebraic functions inter-

connecting the nodal values at these nodes is derived from

the approximation given to the governing equation. How

this approximation is made, distinguishes one method

from the other.

The finite element (FE) method is a numerical method

in which a function is chosen for each subregion to approxi-

mate the relation amor,g nodal values defined in each



i!

element. These approximation functions are normally

polynomials of a lower degree and depend on the geometry

of the element and the location of nodal points. The

nodal values at these points are the unknowns of the

problem. In the finite element method the approximated

function in each element is made to satisfy the governing

equation in an integral form either by a variational

principle or a weighted integral. The substitution of

the approximate function into the integral form of the

governing equation for all elements yields a set of equa-

tions whose number is equal to that of the unknown nodal

values. The solution of these equations for the unknown

nodal values represents the approximate solution to the

problem. Zienkiewicz [I] showed that the finite element

is fairly stable. However, the derivative of the finite

element solution may become discontinuous unless further

approximation or high degree of the polynomial is used.

In £he finite difference (FD) method £he functional

relationship between a nodal point and its neighboring

ones is neither obtained from the analytic solution nor

from the approximate functional forms of the differential

equation; instead, they are obtained from the different

approximation, which essentially is based on the trun-

cated Taylor series expansion of the dependent variables.

The finite difference approximation of the differential

equations ;an be written for each unknown nodal value



which is interrelated among neighboring nodaZ values. Thus,

unknown nodal values will be governed by the n finite dif-

ference equations. This set o£ the algebralc equations can

then be solved as in the case of the finite element method

providing the approximate numerical solution. The common

difficulty with the finite difference (FD) method, depending

on the partial differential equation, is the stability,

accuracy, and rate of convergence.

The high-speed computing machine has enabled scien-

tists to solve complex problems. This capability has,

in turn, stimulated research in numerical analysis since

the effective utilization of computation depend_ strongly

upon the continual advancement of research in relevant

areas of mathematical analysis. A good numerical method

thus must be able to provide numerical solutions at any

point of _he problem domain such that the solution is less

dependent on the grid size and is accurate with the least

truncation errors. Furthermore, the numerical scheme must

be stable and have a fast rate of convergence. In the

present investigation, a numerical scheme called the

finite analytic (FA) method is investigated.

The finite analytic (FA) method is a relatively new

numerical method for solving the ordinary and partial

differential equations, developed recently by Li and

Chen [2] and Chen and L£ [3]. The basic idea of the FA

method is to incorporate the analytic solution in the



numerical solution of partial differential equations.

The PA method is neither the finite difference (FD) nor

the finite element (FE) method. The FA method utilizes

the local analytic solution of the ordinary and partial

differential equations obtained for small subregions of

the problem. To implement the finite analytic [FA)

method, the domain of a complex problem is first sub-

divided into simple subregions in which the problem may

be solved analytically. Secondly, from the local analytic

solution an algebraic relation between a nodal value in

the subregion and its neighboring nodal values is obtained.

I£ the problem is divided into n subregions there will be

n independent algebraic equations to be solved. The solu-

tion of the system of finite analytic algebraic equations

thus provides the numerical solution of the problem.

Li and Chen [2] and Chen and Li [3] have shown that

the FA method has several advantages over the finite dif-

ference (FD) and finite element (FE) methods. Firt, the

FA method is relatively less dependent on grid size and

secondly, the system of FA algebraic equation is rela-

tively stable. Thirdly, the FA solution is differentiable

in any direction and is a continuous function in the solu-

tion domain. The disadvantage of the FA method is that

the method requires analytic analysis.

In the present investigation the FA method is further

explored and developed by applying the FA method to solve



the Poisson equation. In Chapter II, previous works re-

lated to the FA method are reviewed. Since the F_

method is relatively new, no previous works done identi-

c_lly in the method resemble the finite analytic method.

However, some numerical methods, that are found to be

partially similar to the finite analytic method, are

mentioned. In Chapter III the principle of the finite

analytic (FA) method is outlined. Chapter III describes

the basic principle of the finite analytic (FA) method

for solving partial differential equations. In Chapter

IV the finite analytic (FA) solution is derived for the

Poisson equation for different types of subregions. Chap-

ter V illustrates the FA solution of a two-dimensional

steady-state heat conduction in a square region with uni-

form energy generation. In this Chapter the FA solution

to the problem is compared with the exact, finite dif-

ference (FD), and the finite element (FE) solutions. The

application of the FA method in solving the Laplace equa-

tion for complex geometry boundaries is given in

Chapter VI. This problem can be considered to be the

heat conduction problem with irregular solid geometry

or the potential flow problem in a contracted channel.

The last Chapter presents summaries, conclusions and

suggestions.
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CHAPTER II

PREVIOUS WORKS

As already mentioned, analytic methods for partial

differential equations are usually restricted to very

simple geometries and boundary conditions. For the more

complex problems, numerical methods must be used to solve

the problem.

The • finite difference (FD) method which is derived

from the truncated Taylor series expansion was used for

ordinary differential (ODE) equations by Euler [4] in

1768. For partial differential equations the first com-

putation of the finite difference methods was probably

carried out by Rung [5] in 1908 who studied the numerical

solution of the Poisson equation. At approximately the

same time Richardson [6], in England, was carrying on

similar research. In 1918 Liebmann [7], in considering

the finite difference approximation to Laplace's equation,

suggested an improved method of iteration.

The "best" 9-point finite difference formula was

derived by Greenspan [8] which is perhaps one of the

most accurate numerical solutions for the Laplace equation.

In the 9-point finite difference formula the solution of

the center nodal value located (i,j) is made as a function



of the immediate surrounding 8 neighboring nodal values

located (i,j±l), (i±l,j), (i+l,j±O, and (i-l,j±l). How-

ever, the similar derivation has not been carried out for

the more complex equations. Also it may not be possible

to derive such a similar finite difference formul_ for

the representation of the derivative for the dependent

variable at the center node as a function of the neigh-

boring 8 nodal values.

The finite element method is the numerical method

based on a variations principle or an int,_gral approxima-

tion for a small element of the problem i which the

solution is represented by an approximate function, usually

a polynomial. The name "finite element" method was first

introduced by Clough [9] in 1960, when he solved the

two dimensional Poisson equation numerically. Concept of

the finite element method was further developed after

1965 when Besseling [I0], Melosh [ii], Fraejs de Veobeke

[12], and Jones [15] recognized that the finite element

method was a form of the Ritz method and confirmed it as

a general technique to handle elastic continoum problems.

In 1965, the finite element method received an even

broader interpretation when Zienkiewicz and Chevny [14]

reported that it is applicable to all field problems which

can be cast into variational form.

The finite analytic method is a numerical scheme

based on the analytical solution obtained for a small
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subregion of the problem in which the governing equation

is locally approximated or linearized but retained the

differential form. The numerical solution of the problem

is then, obtained from the assembly of all analytic solu-

tions. The idea of the finite analytic numerical method

including element analytic and line analytic was estab-

lished by Li and Chen [2] in 1978 and, Chen and Li [3] in

1979. Naseri-Neshat [15] then applied the FA method

further to two dimensional Navier-Stokes equation, and

demonstrated that the FA method is made more stable and

accurate for elliptic partial differential equations

even at higher Reynolds number.

As it was mentioned the FA method is relatively

a new numerical solution scheme that utilizes the local

analytic solution of the ordinary or partial differential

equation. There are some numerical methods similar to

the FA method, but there are some basic differences. Many

methods similar to the finite analytic method are based

on the concept to reduce the governing partial differential

equations to an ordinary differential equation in one di-

rection while the FA method retains the partial differen-

tial form. Some o£ these methods similar to the FA

method bear the name of Telenin's method, the method of

lines O4OL), and Fourier series (FS) methods. Roach [16]

in his book mentioned the Fourier series (FS) methods.

The Fourier series methods are based on the fact that an
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exact solution to the finite difference equation can be

expressed in terms of finite eigen function expansion

while the FA method does not involve the use of finite

difference approximation in its formulation. Basically,

the Fourier series methods involved breaking down a com-

plex problem into simpler problems but the simpler prob-

lems are approximated by the finite difierence operator,

which is the source of the truncated error.
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CHAPTER III

PRINCIPLES OF THE FINITE ANALYTIC METHOD

I0

In this Chapter the basic idea of the FA method as

outlined by Li and Chen [Z] is introduced. Consider a

partial differential equation L(_) =-{, where L is any

partial differential, linear or nonlinear and {Cx,y) is

an inhomogenious term. This partial differential equa-

tion (PDE) is to be solved in region D, as shown in Figure

(I[I-l), with the boundary conditions and/or initial con-

ditions to be specified so that the problem is well posed.

If the analytic solution to the partial differential equa-

tion is available, then there will be no need for the

numerical methods. However, in many physical and engi-

neering problems, finding an analytic solution due to

either the complexity of the equation or the irregularity

of the problem domain is not readily available. Therefore,

a numerical method such as the finite analytic (FA)

method may be used to obtain a numerical solution.

III.1 The Principle of Finite
Anai),t ic Metho_

The basic idea of the FA method is the incorporation

of local analytic solutions in the numerical solutions of

partial differential equations (PDE). The total region
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D is decomposed into many small rectangles, as shown in

Figure (IIl-l). The nodal points intersecting the coordi-

nate lines are denoted by, for example, point P, (i,j).

A typical subregion of the problem with node points p(i,j)

is shown in Figure (Ill-Z), where h = Ax and k - ay are

grid size in x and y directions. The eight neighboring

node points surrounding the point p are denoted b 7 the

subscripts HC (east central), WC (west central), SC (south

central), NC (north central), NE (northeast), NW (north-

west), SE (southeast), and SW (southwest). These points

correspond to the points (i+l,j), (i-l,j), (i,j-l), (i,j+l),

(i+l,j+l), (i-l,j-l), (i+l,j-l), and (i-l,j-l) respectively.

Once the region D is subdivided into simple rectan-

gular subregions, an analytic solution in a single subre-

gion may still be difficult, such as nonlinear partial

differential equations like the Navier-Stokes equation.

Since, the subregion is small, the local linearization may

be made to obtain an approximate solution. The finite

analytic solution of the Navier-Stokes equation was solved

by Naseri-Neshat [15]. When the region D has been divided

into simple rectangular subregions, the local approximate

analytic solution may be found for these simple regions

provided the boundary and initial conditions in each simple

subregion are properly specified.

In this present investigation only the linear partial

differential equations, namely Laplace and Poisson equations

with linear boundary conditions,are considered.
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III.2 The Finite Analytic
S61Jtion to a Su6regign

Consider a simple subregion, as shown in Figure

(III-Z). The elliptic partial equation L(#) =-6 may be

solved analytically for the subregion with specified boun-

dary conditions, and the nonhomogeneous term _ as

-- f(fN(x) ' fs(X), rE(Y), fw(Y),h,K,x,Y,_)

(III-1)

where the fN' fS' rE' and fW are specified boundary con-

ditions. The north and south boundary conditions fN' fS

are functions of x while the east and west boundary con-

ditions fH and fW are functions of y. For the purpose of

the numerical solution,the boundary functions fN' fS' rE'

and fw may be approximately expressed in terms of the nodal

values along the boundary such as:

fN " f(_NW' _'NC' _NE' h, x),

fE " f(_NE' _EC' _SE' k, y),

fS" f(_SW' _SC' _SE' h, x),

(III-2)

fW " f(_'NW' _'NC' _'SW' k, y).
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The fmlctional relationship between the unknown values

of the dependent variable _ at any interior point (x,y)

of the local subregion in terms of its surrounding boLmdary

points _EC* _'WC' _NC' _SC' _NE' CNW' _SH' and _SW can be

obtained as,

= f(_EC' )WC' _NC' )SC' _NE' _NW' _SE' #SW'

h, k, x, y, _) (III-3)

which is the basic finite analytic formula. For linear

operators such as the Laplace operator, the 9-point FA

solution for the interior point at P has the form

QP = CEC _EC + CWC _WC + CNC QNC + CSC _SC + CNE _NE

+ CN"N _NW + CSE _SE + CSW _SW + CGp (III-4)

where the C's are the finite analytic coefficients whose

values are obtained from the local analytic solution. For

example, CEC denotes the coefficient multiplying the east

center node value _EC' CGp is the inhomogeneous part of

the local analytic solution. Equation (III-4) is an al-

gebraic equation relating to the interior nodal value #p

to its surrounding ezght nodal values. It should be noted



that equation (III-4) is obtained from the analytic solu-

tion rather than from the finite difference or finite ele-

ment approximation of the partial differential equation.

The same finite analytic, procedures may be applied

to adjacent subregions where the boundary nodal point,

say EC, is considered as the interior point p. Thus, in

general, we have n equations similar to equation [III-4)

for n unknown nodes (i,j) in the entire region D.

They may be written as:

_i,j -- C:_I_ ,j _i+l,j + Ci-l,j _i-l,j + Ci,j+l _i,j+l

+ Ci,j-I _i,j-I + Ci+l,j-I _i+l,j-I + Ci+l,j+l

_i+l,j+l + Ci-I,j+I _i-l,j+l ÷ Ci-l,j-I _i-l,j-I

+ Ci,j (_) (lll-S)

where i - 1,..IM,and j : I,..JN. The system of equations

given in equation (III-5) is the finite analytic represen-

tation of the partial differential equation L(¢) :-_. The

assembly of all the expressions for all nodal points can

then be expressed in a matrix form and can be solved by

many existing numerical techniques such as the Gauss-Seidal

iterative method or ADI (Alternative Direction Implicit)

method.
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There is an essential difference between the finite

analytic (FA) method just described and the finite dif-

ference (FD) or the finite element (FE) methods. In

finite difference (FD) methods the relationship between

_p and its neighboring points _n is not obtained from the

analytic solution of the differential equation, but

instead, from the difference formula truncated from the

Taylor series expansion of the dependent variable about its

neighboring points. On the other hand, the FE method

assumes an approximate functional form (shape function),

normally some polynomials of a lower degree, say up to

the 6th degree, to represent the solution in the whole

local element. It uses the variational or the Galerkin

type or weighted residual type of integration on the dif-

ferential equation over the local element to find the re-

lation between ¢p and its neighboring points Ca"

The finite analytic solution given in Eq. (III-3) on

the contrary is obtained from the local analytic solution

of the differential equation L(_) =-_ without tempering

the derivatives of the governing equation. For the

Laplace and Poisson equation the only approximation made

is on the boandary conditions of the suoregions. The

accuracy of the finite analytic (FA) solution may be im-

proved by considering more boundary nodal points ix_'the

local subregion. For example, the use of five nodal points

on each side of the boundary as shown by the dashed line
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in Figure (IiI-2), will lead to a more accurate 17-point

finite analytic solution.

It should also be noticed here that the finite analy-

tic solution, since it is analytic, is differentiable.

Therefore, the derivative of the solution # Eqs. (III-3),

which reprusents important physical variables such as

heat flux from the temperature distribution or velocity

and stress from the potential or stream function, can be

readily obtained without the difficult_or the numerical

differentiability is one of the advantages of the finite

analytic method. The finite analytic solution for the

derivatives may be written as:

(#x)p -- CxEC _EC + CxWC OWC + CxN . _NC + CxSC OSC

+ CxNE _NE + CxNW _NW + CxSE _SE + CxSW _SW

and

+ CxG P
(III-6)

(¢y)p = CyEC #EC + CyWC QWC + CyNC @NC ÷ CySC _SC

+ CyNE QNE + CyNW QNW + CySE ¢SE + CySW ¢SW

+ CyGP
(III-7)
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! !

where C x s or C7 s are respectively the finite analytic

coefficients multiplying the corresponding neighbor nodal

values.



2O

CHAPTER IV

THE FINITE ANALYTIC FORMULA FOR

THE POISSON EQUATION

In this Chaptor the FA method is applied to the Pois o

son equation as an example of an elliptic partial differ-

ential equation. The Poisson equation, which includes the

Laplace equation, appears in many physical as well as en-

gineering problems, such as steady state heac conduction

with heat generation or source and sink flows and in fluid

dynamics. Several basic FA solutions for the subregion with

different local boundary conditions are presented in this

chapter. The finite analytic solution for a special prob-

lem will be given in the subsequent chapters.

Let us consider an example of a Poisson problem with

the boundary condition shown in Figure (IV-I) where the

lower left corner is insulated while the outer boundary

may be specified with the boundary conditions of Dirichlet

(dependent variable), Neumann (derivative) or Churchile

(mixed) type. On the other hand, for an interior sub-

region each boundary condition of the subregion is ex-

pressed by three dependent nodal values. The finite

analytic solutions then are different if the boundary

conditions are different. Therefore, in the following
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section we shall consider the FA solutions for different

types of boundary conditions that are present in Figure

(IV-l).

22

IV.1 The FA Solution for General

Internal _0I) Subregion

Let us consider now the finite analytic solution for

the two-dimensional Poisson equation in the rectangular

subregion, shown in Figure (IV-2). This problem represents

a typical problem for the internal subregion where only

dependent variables are used to specify the boundary con-

dition. The governing equation is

(IV-l)

where { in general can be a function of x and _ but in

deriving the FA solution, _ w£11 be approximated as a con-

stant in the local subregion. The boundary conditions for

this subregion are

x . o _, . fwCy),

x - 2h , = rE(y),

y - o ,#= fs(X),

(IV-2)

y - 2k _ - fN(X),
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where fw' rE' fs' and fN are west, east, south, and north

boundary functions of the subregion. In order to derive

a 9-point finite analytic formula, the boundary conditions

can be approximately represented by quadratic polynomials

in terms o£ the boundary nodal values at boundary points.

For example ;

24

fN(X) = a 0 + alx + a2x2 ,

where

ao = _NW'

I
al =- ]_ _NW + _ *NC _ CNE' (IV- 3a)

1 1 1

Sim£1arly, it can be done for the other three boundary

functions fsCX), fw(y), and fE(y).

2
fs(X) = b0 + blX + b2x

where



bo " _SW'
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bl " " I_ _SW + _#SC " "_ V_SE (iV-3b)

25

1

b2 " 2h_ ¢SW

1 1

V _SC + _ ¢NE

£w(y) - CO + CIY + C2y2

where

CO ffi _SW'

1
Cl ffi- _ I#SW ÷ _ _WC _ _NW'

{IV-3c)

] 1 1

and

2
rE(y) - d o + dlY + d2Y

where

do " _SE'

dl"" _ $SE + _ SEC" _l( SNE' (IV-Sd)
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1 1 1

Here h and k are the grid size in the x and y directions.

The local analytic solution _of the Poisson equation may

be obtained by the superposition of the following two

problems.

26

Problem (1): Homogeneous equation with nonhomogeneous

boundary conditions

_2, H = 0 (IV-4)

_H = fE (y) x = 2h

_H " fW (y) x = 0

_H" fN (x) y - 2k

_H = fs (x) y = 0

Problem (2): Nonhomogeneous equation with homogeneous

boundary condit ions

v2 CNH = - _ (IV-S)
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_NH = 0 x ,, 2h

_NH =- 0 x-=0

_NH " 0 7 " 2k

_'NH 0 y = 0

IV.I.I The Solution to Problem (].)

Since the Poisson equation is linear: the solution to

the subregion can be superposed by four simpler solutions,

or

OH = )IH + _2H + _3H + '_4H (IV-6)

where,

(_,IH)x x + (_OIH)y Y = O,

{_02H)x x ÷ (qJ2H)y.)r = 0,

+ C)3H ) - 0(*3H)xx yy '

+ (04H)yy 0 (IV-7)(*4H)xx
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with the corresponding boundary conditions

y = 0 _IH = O, ¢2H " O, _3H = 0, _411 = fs Cx)'

y = 2k ¢IH = 0, ¢2H s 0, = £NfX)' #'4H= 0,

X = 0 _il{ = O, ¢2H = fW (y)' ¢3H " 0, '@4H " 0,

x=2h _IH = fE (y)' ¢2H = O, ¢3H = O, ¢4H = 0.

(IV-8)

The problem for _IH may be solved by the method of

separation of variables.

(_iH)xx + (_iH)yy = 0 (IV-9)

with boundary conditions

y - 0 _IH = 0

y - 2k @IH = 0

x -0 _IH=0

x =2h *IH " eE(Y)"

iL,.L ,,, i ..... _j_
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The analytic solution for this problem is

¢IH = n_IEln Sin(_nY) Sinh(_nX) (IV-IO)

where,

_n " _ and the coefficient Eln is determined as

fO2k rE(Y) sin(_nY)dy

Eln - ....

j2k sin 2(_ny ) sinh(2_nh)dy
(IV-11)

By substituting fE(y ) from the equation (IV-3d) into

equation (IV-11) and integrating the equation (IV-11), E1n

is expressed in terms of boundary nodal values _SE' _EC'

and _NE" Evaluation of _IH at point P gives

(_IH)p " CISE _SE + CIEC _EC + CINE )NE (IV-12}

where

. ® . 2 sinh(by)
Cis E n_ 1 (_ b-,L) sin (b) sinh(2by)

i C,,.,.." i" 4 sin(b) _ .

ir._ n t b _ sinh(2by) i

J

b =nH
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Similarly, the solution of _2H' _3H' and _4H can be ob-

tained. The solution to problem (I) is then the sum of

these solutions, or

S0

_H = _IH ÷ _2H ÷ _3H + _4H

IV.l.2 The Solution to Problem (2)

To solve the problem with the inhomogeneous term one

may use the separation of variables method, first to the

homogeneous equation with the two x boundary conditions

equation (IV-S) to obtain the eigen values. Then, the

solution to the problem (2) reduces in finding the function

Dn(Y) in the series solution assumed for equation (IV-S) as

o_

*NH (x,y) - X Dn(Y) sin(UnX) (IV-13)
n'-I

nn 2
where _n = _; n = I, ,...

The unknown function Dn(Y ) in equation (IV-13) is governed

by Eq. (IV-14) which is obtained when Eq. (IV-13) is sub-

stituted into the equation (IV-S).

r [Dn(Y) -usa Dn(Y)] sin(vnX) = - ¢ (IV-14)
n"l

The constant _ can be expanded in terms of Fourier sine
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series with the eigen function given in Eq. (IV-13) or

- Z W (y) sin (UnX) (IV-15)
n-I n

where Wn(Y ) can be found as

h

g sin (UnX)dx
Wn (Y) = ]-h

or

1
Wn(Y ) -- - ,5 ¢os(Zb) (IV-16)

n_
where b = -_-.

Then the Fourier series expansion for _ is

= _ [- _ cos(2b)] sin(unX) (IV-17)
n=l

Substituting equation (IV-17) for _ into equation (IV-14)

leads to a second order ordinary differential equation for

Dn(Y). The second order differentlal equation for Dn(Y )

with its two zero boundary conditions is

Dn(Y ) - v2 n D n(y) = . W n(y)

Dn(Y ) - 0 y -- 0

D (y) -- 0 y = 2K
n

(iv-ls)
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_0NH . _ 2h2_..._ [ (. 1 ÷. 1
n-1 b s sinh(2b/y) tanh('2b/-¢) )

sinhC_ny) - cosh(_ny) + 1] cos(2b) sin(_

(IV-19)

n x )

At point p where x - h, y = k, the solution becomes

® 1
= r. 2h2_ sin(b) sinh(b/y) [tanh(2b/y)

(_NH)p n=l b 3

1 1 1

s'inh (2b/y) + s inh (b/_-_ t anh'(b'/'y)'1" (IV- 20)

where b = nn/Z, n = 1,2,...

IV.I.3 The 9-Point FA Formula for the

Internal Subregion

The local analytic solution to the subregion shown in

Figure (IV-2) is the sum of the homogeneous and nonhomo-

geneous solutions just obtained in the above section. That

is,

_(x_y) - r. Eln sin(_ny ) sinh(_nX ) + r. Ezn sin(_ny )
n-I n-l

[sinh(kny ) tanh(2Anh ) cosh(XnX)] + r. Ezn
n-1
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sin("nX) sinh("nY) + n=Ir E4n sin(UnX ) [sinh(.ny )

-tan(2_nk) cosh(_ny)] + r. 2h_h.i. [ (. 1
n=l b 3 sinh (2b/_)

+

I
tanh(2b/_)) sinh(unY)-cosh(_ny) + I] cos(2b)

sin(_nX) (IV-21)

where Eln is equation (IV-12) and

2k

f
o fw (y) sin(XnY)dY

E2n = _

K tanh(2Xnh )

E3n

2h

0
1

fN(x) sin (VnX)dx

h sinh (2vnk)

2h

f
f (x) sin(.nX)dx= o s (IV-22)

E4n -

h tanh (2_nk)

_! nH _ nH
b = -_-, Un = _' n " _]["

Substituting the approximate quadratic expressions for

the boundary function f's equations (IV-3) into the equa-

tion (IV-21) and evaluating it at P,gives tile 9-

point FA formula as follows:
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Sp = CEC SEC + CWC SWC + CNC SNC
+ CSC _SC +

(iv-23)

+ CNW QNW + CSW _SW + CGp
CNE _NE + CSE _SE

where

CEC

® s inh (by)_
4 sin(b) sinh(2bY )Z --

n=l b s

CNC =
4 sin(b) s inh fbx)-- sinh 2by)

n=l b 3

CNC =

® 4 sinh(b/_c_
-- sin(b) sl_)

n=l b 3

sinh (b/Yl
4_ sinCb) _)

CSC = n-1 b 3

= Z
CNE n=l

" Z____}sin(b) [_ + sinh (b /Y )_.]

(_- b _ ,slnn_o_ _inh[Zb/Y)

CNN =
r.

n-I

2---0 sin(b) [_ + sinh(b/_c_ ],s innt'-u_) _Y}

b 3

CSE =
z

n=l

.sinh (by__ sinh (bLc_ ]

(_ . 2___) sin(b) [_} + sx-_-_-C_BTv)
b 3

CSW =
Z ( 2_) sin(b)

n=l b _

$].nrt_#.u¥] + slnnk&ul'()

CGp

1

Z _ sin(b} sinh(b/Y) [tanh(Zb/x)

n-1 b 3

1 _+ 1 i ]

_,inh (2b/Y } _ tanh(b/Y]
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F_r the Laplace equation since _ = 0, CGp = 0.

The coefficient C's in the above equations need to be

evaluated once if the grid size is given. In particular,

when the grid sizes in x and y directions are the same,

that is y = 1, the 9-point FA formula for the interior

point P, _p, in the interior subregion can be evaluated

once. The numerical values of these coefficients are

listed in Table (IV-l). Here the numbers given in Table

(IV-l) are corresponding values at any given node. For

example, 0.205315 is the FA coefficient CNC, CSC, CES ,

and CWC. It should be mentioned that the eight coefficients

for the neighboring nodal val,es denoted by Cn(i.e. n = EC,

wC, etc.) and the constant multiplying _h 2 are universal for

all subregions and also independent of grid size. However,

the accuracy of the formula is restricted by the accuracy

of the approximation made for the boundary condition in

equation (IV-3) which has an accuracy of 0(h:) or O(kZ).

As it was already mentioned that the FA method also

gives the solutions to the derivatives _ and _ This
_x _y"

is a definite advantage for the method as the analytic solu-

tion in any subregion is differentiable. Therefore, by dif-

ferentiating of the equation (IV-21), a corresponding 9-

point FA formula for the derivative of a node point inside

the rectangular subregion can be derived. For example,the

differentiation of equation (IV-21) with respect to x and



F

_F,_ ¸ ._..

,Nt "

NW

0.044685

0.205315

SW

0.044685

%.

NC

0.205315

P

SC

0.205515

i L '

, i

/', L;, \

N£

0.044685

z z z i

EC

0.205315

i

SE

0.044685

36

!

Table (IV-I). FA Numerical Values for Coefficients

in a General Internal Subregion.

(The 9-point FA Formula for General

Subregions)
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evaluated at the east-center point along the east boundar_

gives the expression for the derivatives at the east

central (EC) node of the rectangle, or _@-_xlEC as

_-_cIEC = _ [CxEc _EC CxWC _WC C@x + +

xNC _NC + CxS C _SC

+ CxNE CNE + CxSE _SE + C
xNW _NW + CxS w _SW]

where

+ C
xG

(Iv-24)

CxEC nE.1 b 2 t anh (-ZS_

am

4CxW C = z --y
n=l b a tanh_

t anh

4C×S C = E by
n-l b 2 t anh_"25"_

CxN E - r. (1
n=l

_m

Cxs E = I: (1
n=l

b2 Y sin(b) [ + 1'..- Vr 7VTl

2__)v sin(b) 1
5 2 [ ta--_filT_'T_y ) + 1t .-rmR z TJ
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® 1 1
CxN W = _ (1 - 2._)y sin(b) [fanh(2by) + tanh('2b/'_) ]

n=l b 2

CxS W = _ (1 - 2--)v sin(b) [tanh I l
n=l b 2 (2by) + _an (2b/v) ]

ao

= r. 2h_ [ 1 1 1
CxG n=l b a t'anh(2b/_) - sinh'(2b'/_)' + s inh (b/V )

1

tanh (b/_) ] sinh (b/_)

For y = 1 the 9-point FA formula of Poisson equation for

the derivative _ evaluated at the east-center node is

written in Table (IV-2). Again, the numerical values in

the Table (IV-2) are universal and independent of grid

size.

IV. 2 The FA Solution for a Subregion
with One Side Insulated

The need for deriving the local finite analytic solu-

tion for different boundary conditions other than the one

just considered i, the previous section arises when the sub-

region has a boundary of the original problem. As shown in

Figure (IV-I) different boundary conditions such as deriva-

tive of temperature or symmetry may be presented. In this

case the finite analytic solution for the subregion is dif-

ferent from the previous one given in section IV-I. In this

section the Poisson equation Eq. (IV-l) in the subregion
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1
_IEc = H

NW

-0.0174SS

WC

-0.14034S

SW

-0.01748S

NC

-0.324686

SC

-0.324686

NE

-0.333144

EC

1.490972

SE

-0.353144

x_ n +

h_ (0. 950832)

Table (IV- 2). The 9-Point FA Formula of the Poisson

Equation for the Derivative 8_/_x

Evaluated at the Midpoint (EC) of the

Boundary Side.
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SA with insulated boundary as shown in Figure (IV-3) is

solved. The boundary conditions for this subregion are:

40

y -- 0 -B-.9--0
ay

y - 2k _ = fN[x)

x * o _ - fw(y)

:c= Zh q,. f_[y) (TV-ZS)

Again, since the Poisson equation is linear the solution to

the problem, _, for subregion SA, may be obtained by super-

position of the following solutions _N and CNH to the two

simpler problems.

Problem (I): Homogeneous equation with nonhomogeneous

boundary conditions

V2,H=O

H = fE (y] x = 2h

* H " fW(y) x = 0

(TV-26)

* H " fN (x) Y = Zk
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T
k

_I

fN(X)

_NW _NC ¢ 4E

NW NC NE

_WC _P

P --

_SW _SC

_--t - 0
?Y

Figure (IV-3). Subregion SA (South Adiabatic)

_EC
'EC fE (y)

_SE

---_----- ---------,4P X

SE
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_ H/_y = 0 y = 0 ElY-Z6)

The homogeneous equation with nonhomogeneous boundary

conditions can be divided to three simpler problems, each

having three homogeneous and one non-zero boundary conditions

as

_H = _IH + _2H + _3H

where

_IH = fN (x) Y = 2k

_lH/_y = 0 _ = 0

-- 0 x = 2h
_IH

= 0 x = 0 (IV-27a)
_IH

V2_2H = 0

,,0 y=Zk
_2H

@¢2H/_y - 0 y = 0

(IV-Z7b)
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92H = 0 x = 2h

_2H = fw (y) x = 0

(IV-27b)

V2_3H - 0

3H = fN (x) y= 2k

t

_3H/3y = 0 y = 0

¢3H = 0 x = 2h

(IV-27c)

O3H = 0 x = 0

The solution to OlH' O2H and O3H can be carried out by the

method of separation of variables and added together to give

the solution to problem (I). The solution to the equation

{IV-Z7a) has the form

)IH = r. D sin(X x) cosh(Xny) (IV-ZS)
n=l n n

where _n = _ is the eigen values and n = 1,2,3 ....

The coefficient D is determined as
n

Zh

f sin(X dx0 fN (x) n x)
D n " --_

S sin2(XnX) c°sh(21nk)dx

O

k
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Substituting iN(X) from equation (IV-3a) into equation

(IV-Z8) and evaluating $1H at point p gives,

(_iH)p '= CI_ #NW + CINC _NC + CINE #NE (iv-zg)

where

® 2__) cosh(b/v)CIN N = r. ( sin(b)
n=l b _ cosh(2b]v)

CIN C =
co s,h (b/T )

r. 4_ sin(b) cosh(2b/y)
n=l b _

CINE = _ (,_- 2) sin(b)
n=l b 3

cosh (b/y)

cosh (2b/y)

Similarly, the solution to (¢2H)p and (¢3H)p can be obtained

by rotating the coordinates accordingly. Then

(_H)p = (_iH)p + (¢2H)p + (*3H)p (IV-30)

Problem (2): Nonhomogeneous equation with homogeneous

boundary conditions

V *) •

-CNH " _

0NH - 0 x = 2h

(IV-31)
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$NH = 0 x = 0

_NH _ 0 y = Zk (IV-31)

_$NH/_y = 0 y = 0

As it was done in section IV.1.2 for equation (IV-St

the problem (IV-51) may be solved. Evaluating the _NH at

point p one has

($NH) p = r. 2h=E [1 cosh (b/y)n=l b 3 c-osh (2b,/y) ] sin(b) (IV-32)

n_ and = h/k.
where b = _--

The 9-point finite analytic (FA) formula for the sub-

region SA, is found by superposing the solution _Hand

SNH given equations (IV-30) and (IV-32).

= ,(Sp (*H)p *NH)p

or

_p = CEC _EC + CWC _WC + CNC _NC + CSC #SC + CNE SNE

+ CNW qJNW + CSE $SE + CSW _SW + CGp (zv-33)



where

CEC

CNC =

O_'L:,.° : ' ..

O_ P C_:I':' " '- "

T [. 8 _ sin(a)] Cos(_),,, _ + Slnnk_T)

n-'l a2 a_

[.!_ + 16 sin(a)][cos_(_) sin__
l

nffil a 2 a
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cos(_)

CNC ffi

® cosh(_
4 sin(b) _)

n=l b s

CS C ffi 0

CNB ffi

® 2 8) sin(a))
S [Z._ + (_ a _ slnnk_J

n=l a 2

cosCa/Z) +
n=l

cosh (b/ll

(_ . L_.) si:_(b) cos-'6Th-T_T_)
b s

CNW =

® 2 B__.) sin(a))[ c°sh(ax/2) tannt=YJ
z [L-+ (_ a'

nffil a 2

® co sh (b/__X/.

cos(a/Z) + Z (_ 2_._) sin(b) _)
n:l bS

t_

'_SE
= Z

n-l
[6.. s sinCa)l _ cos(a/Z)" _ S lnn LaY)

a 2 a s
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. _ [b 8 sinh(ay/2)
2 s sin(a)][cosh(av/2) tanh(a_] ]CSW n=l a a

cosCal2)

CGp n,,1 b-]- [ I 8osh(2b/_)l sln(b),

nil ha = , b = _--_ , V = _, and n = 1,2 ....

For a given ratio of grid si:v say v = 1, the coefficient

C's in the above equations can bo evaluated.

The 9-point FA formula for the subregion of the type

SA is in Table [iV-3) where the numerical values for the

coefficients are again universal and independent of the

grid si-.e. The hash marks drawn at the bottom of the

Table denote the south boundary's insulation or _ = O.
oy

IV'. 3 The FA Solut ion for _l Subregion
with Two I'nsulated Sides '

Consider the subregion SWA,sho_,'n in Figure (IV-4}

where the south :lnd west boundaries are insulated or have

:ere derivatives. The governing equ,ltion and boundary con-

ditions are
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NW

0.042678

WC

0.271649

SW

0.741445

.NC

0.223055

P

SC

0.0

"/ / // / / / / / // ,

NE

0.042678

EC

O. 271649

EC

O. 741445

// ///,,

x _n+

_h 2 (0.338716)

Table (IV-3). .FA Numerical Values for Coefficients

in a Subregion with One Insulate

Boundary. (The 9-Point FA Formula

for Subregion SA)
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T
k

I

fN(x)

_p

P

_SC

WC SC

Ft_uro (IV-41. Subregion SWA

NE
imn

NE

EC t'E (>')

EC

*SE

SI_

0



y =0 -_y -- 0

y = 2k , = fN(x)

x-0 2-_=0
_x

x - 2h _ - fE(y) (IV-34)

The solution to equation (IV-34) can be similarly solved

by the method of separation of variables. Thus, the finite

analytic solution for subregion SWA evaluated at point P

gives

_p = CEC _EC + CWC _WC + CNC _NC + CSC _SC ÷ CNE INE

+ CNk/ _NN + CSE _SE + CSh' _SW + CGp (IV-35)

where

cosh(al/2)
CEC " n-lZ [ 8___a:÷ a'l--_6sin(a)] ¢osh(a_} cos(a/2)

CWC - 0
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cosh (a/2_'_)
[_ 8__.. + 16 sin(a)] cosh'(a/-f) cos(a/2)- r

CNC n-1 a 2 a s

CSC = 0

® rcosh (ay/2) +
= z [2.._+ 2 8 ) sin(a)]Lcdsh(ay)

CNE n=l a _ (a a s

cosh(a/2y) ] cos(al2)
cosh(al.y)

CNW = r_ [6 8 sin(a)] coshCa/Zy) cos(a/2)
n=l a z a 3 cosh(a/y)

" cosh(ay/2_

CSE = n=IZ [6.._a2 8_._a3 sin(a)] coshCay) cos a12

CSW = 0

" 8h2_
• r_ sin(a) [1

CGp n=l a 3
cosh(a/2y)] cos(a/2)
cosh(a/y)

(2n-l)a
a = 2 , n - 1,2, ....

Again in the case y = I, the coefficients C's are

universal constants. Once these coefficients are calcu-

lated, they can be saved and used repeatedly. The numeri-

cal vaiues of these coefficients are listed in Table (IV-4).

Presented above are some sample FA solutions for the

Poisson equation. Further FA solutions can be solved for

more complex boundary conditions as the need arises.

.... [ ..... =--A
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/
/

/

/

/

/

/
/
/

/

/

/

/

0.112854

0.0

i

SW

0.0

NC

0.366502

P

SC

0.0

//// // // ////

NE

0.0413275

EC

0.366502

SE

0.112834

/ / / / / /

x_ n +

_h = (0. 724753)

Table (IV-4). FA Numerical Values for

Coefficients in a Subregion
with Two Insulated Boundaries.

(The 9-Point FA Formula for

Subregion SWA)
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CHAPTER V

TWO DIMENSIONAL HEAT CONDUCTION WITH
CONSTANT HEAT GENERATION

In order to illustrate and examine the accuracy of

the finite analytic (FA} method, a problem having an ex-

act solution is solved with the FA method. The finite

analytic solution is then compared with the exact solu-

tion and the corresponding finite difference and finite

element solutions. In this section, the problem of a two

dimensional heat conduction in a square region (LxL) with

uniform heat generation,as described in Figure (V-l),is

chosen. The western and southern sides are insulated

while the other two sides are kept at a constant tempera-

ture TL. The governing equation and boundary conditions

of the problem are

K(Txx + Ty7) + g - 0 (v-l)

aT,, 0
x ,, O, y > O, a_

x = L, y • O, T = T L

aT
y = O, x • O, -- " 0

ay
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y=L, x > O, T=T L
fV'- 2)

where, g is the heat generation, k the thermal conductivity,

and L the size of square.

The pToblem may be normalized as

Sxx + SY'/ = " I

(v-3)

with dimensionless variables defined as

T - T L

gL 2

x
x = [, and y = •

The corresponding boundary conditions in dimension-

less forms are

Cx 0 x=O y > 0

q_y=0 y=O x > 0

¢ = 0 x =I y > 0

q_ = 0 y = i x > 0 (V-4)



55

Y OF PC;OR QL!ALITY

L

J

T(x,L) = T L

J+l

J

J-I

WA ci
T(L,y) = T L

2
SWA SA

J-I

1-I 2 i'l i i÷l I

X

Figure (V-l). Nodal-Point Arrangement for Two
Dimensional Steady Heat Conduc-
tion in a Square Region with
Uniform Heat Generation.
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V.I Finite Analytic Solution of the Problem

The first step in the FA solution to the problem is

to subdivide the region into a finite number of subregions

by setting up a system of nodes as shown in Figure (V-l).

As shown in Figure (V-l),the subdivided problem involves

three distinct types of subregions named General Interior

(GI), SouthWest-Adiabatic {SWA), and South-Adiabatic (SA)

or West-Adiabatic (WA). The boundary conditions for these

three distinct types of subregions as shown in Figures

(IV-2), (IV-3), and (IV-4) are following.

Type (GI),

y -- 0 --fs(x),

y = 2k _ = fN(x),

x = o _ = fw(y),

x = 2h _, = fE(y). (V-S)

Type (SWA),

a__._. 0
y--" 0 ay '

y-- 2k ¢ = fN(x),

x-0 _--_- 0X



r

x = 2h * = %.Cz).

ORIG_'D';',_• ,....

OF PO0,'_ " "'_' i'( (v-6)

57

Type (SA)

y = 0 ay 0

y = 2k , = fNCx)

x-- o * " fw (y)

x = 2h ¢, = fECY) (V-7)

where the local boundary condition f's have already been

described in Chapter IV.

V.I.1 The Formulation of the FA

Method for ,p

The basic principle of the FA method and the g-point

FA formulas for the Poisson equation in three types of sub-

regions GI, SA, and SWA Tables (IV-l), (IV-S) and (IV-4)

were already presented and derived in the previous chapter.

However, if the temperature along the insulated boundaries

desired, the local analytic solution derived in the previous

Chapter can be easily evaluated at these nodes. This is

given in the following section.
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V.I.2 The 8-point FA Formulas for the

Nodal Values along the Adiabatic Boundaries

Consider the Piguros (V-l), (IV-2), {IV-5) and (IV-4).

There are three distinct boundary nodes as SC in subregion

(SA), SC and SW in subregion (SWA). The 8-point FA for-

mulas for the nodes along the insulated boundaries can

be obtained from the analytic solution in each subregion

evaluated at the boundary nodes.

The S-point FA formula for the boundary node SC in

subregion (SA) is

@SC = C_C SEC + (we SWC + CNC SNC + CNE $NE + CSW $SW

+ CSE _SE + CNW ON'W + CGp
{v-8)

where

CEC = Z [ _ L + 1__6 sin(a)] sinh(ay/2)
n-I a2 a3 sinh (ay)

= r. L + 16 sin{a)] [cosh(_l)
CWC n-i [- a 2 a 3

sinh(ay/2) ]
tanh(ay) '

® 4 sin(b]
CNC = r.

n=l b a ¢osh{by)'

r. [z___+(z
CNE n-I a 2

" 2
n-i b a

8 ) sin(a)] sinh(av/2) +
a' sir/h (av)

sinCb )
) cosh(b/y) '



CSW = r
n-i

[6 8 sin(a) ][cosh(_) sinh (ay/2)"- " tan(ay) ]'
a 2 a I
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mo

Cs_ " = Z
n-l

s inh (ay/2)
[6 . 8_ sin(a)) sinh(ay)
a 2 a 3

- z [z_.+ z
CNW n-I a 2 (E

8_) sin(a)) [cosh(_) sinh(ay/2)]" t:'arih (ay)$
a

co

+ r (_ . 2__.) sinCb)
n=l b s cosh(bl_)'

= X 2h2 1
CGp n=l b-'_-- [! - cos--5-{_Z_7_] sin(b).

Again, for 7= 1 the universal 8-point FA £ormula for sub-

region (SA) can be obtained. The numerical values of

these coefficients are listed in Table (V-I).

The 8-point formula for boundary node SC in sub-

region (SWA) is equation (V-8) where

= Z [ _ 8_ + I_66 sin(a)) cosh(ay/2)
CEC n=l a 2 a s • cosh(av)

CWC = O,

® cosh (a,_/2)
CNC = x [ _ _ + 1..65 sin(a)) cosh(a_)

n'l a 2 a s

¢o

CNE = X [2__ + 2 8__) sin(a)]fc°sh(ay/2) + cos(a/2)
n-l a2 (E a' "cosh(a_) cosh(a/y) ]'

CSW - 0



)
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= Z
CSE n.l
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cosh(ay/2)
[6 . 8__ sin{a)] Cosh{ay)

a 2 a s

® cos (a/Z)
CN W - r [6_.. 8_ sin(a)] cosh(a/x')'

n=l a 2 a s

" 8k2
CGp - E -- sin(a) [1

n=l a s

1
cosh{.a/,,}] cos(a/Z).
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The numerical values of these coefficients for y - 1 are

presented in Table (V-2).

The 8-point FA formula for node SW in subregion {SWA)

is

_SC = CEC )EC + CWC OWC + CNC _NC + CSC )SC + CNE )NE

+ CSE _SE + CNW _NW + CGp (v-9)

where

CEC =

Qm)

r. [.8 + 16 sin(a)]/cosh(ay),

n=l az a _

CWC = 0

L+
CNC = Z [-

n=l a 2 a 3
sin(a) ]/cosh(a/x),

CSC - 0
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_SC =

NW

-0.001627

WC

0.173170

NC

0.0890ZS

NE

-0.001627
ii

EC

0.283945

SE

0.173170

"'"I/ 2 / / / ; / / // / // / / / ,

x_ n +

h= (0.455731)

Table (V-I). FA Numerical Values for Coefficients

in a Subregion with One Insulated

Boundary for the Point on the Insulated

Boundary.
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_SC =

/
NW

/

/

/ 0. 099149

/ WC

/

/

/ _.0

/ SW

/

/ 0.0

/ /// / /

NC

0.256229

/ / // //

NE

-0.000786
,I

EC

0.416351

SE

0.229057

//////

X#n+

k 2 (0.917533)

Table (V- 2). FA Numerical Values for Coefficients

in a Subregion with Two Insulated
Boundaries for the Point on the Insulated

Boundary.
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CNE = n=lr [2___a2 + {_2 aa8) sin(a}] [coslcay} + coshCa/y)],

oo

CSE = z [6 8
n=l a 2 a 3

w

C_ = z [6 8
n=l a 2 a 3

sin(a)]/coshCay) ,

sin (a_]/coshCa/y),

OD

CGp = r. 8h sin(a) [I I
n= I a--_- cosh Ca/y) ] "

The numerical values of these coefficients for _ = I, are

listed in Table CV-3). It should be mentioned that for the

nodes on the west boundary side in subregion WA, the FA

formulas are obtained by rotating the coordinates of the

south side.

V.2 Numerical Solution of the Problem

Let us now apply the finite analytic formula to the

example with equation CV-3) and (V-4). Consider the FA

solution with uniform grid size h = k as shown in Figure

(V-l). The grid spacing h, for n number of grids is

L with the origin (0,0) (which corresponds toequal to _,

i=l, J=l) at the south west corner and a grid size h as

shown in Figure (V-I), the numbering on the y-coordinate

will be J = 1,2,3...3, and on the x-coordinate i-I,2,3...I,

respectively. The purpose of the FA method is to find a

numerical solution # at points J - 1,2,...3 and i-I,2,...I

from equations (V-3) and IV-4).
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_SW =

/ NW
/

/

/ 0,157798

/ hrc
/

/

/ 0.0

/

/

1

/

s /////

NC

0.34377S

SC

0.0

// ////

NE

0.006854

EC

0.34377S
i

SE

0.1S2798

//////

X_n÷

h2 (I.178614)

Table (V-3). FA Numerical Values for Coefficients

in a Subregion with Two Insulated
Boundaries for the Point on the Corner

(SW).
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The finite analytic scheme results with a set of

simultaneous, linear, algebraic equations to solve. Thus,

there are nxn unknown nodal temperature values to be solved.

The nxn FA algebraic equations can be constructed from the

9-point and 8-point FA formulas (tables IV-l, IV-3, IV-4,

and V-1 to V-3). The FA equations can be cast in the

following forms.

For any general internal subregion, {i>2, J>2)

_m+l = 205315 (_.ml,j+1i,J
m + m

+ _i+l,J _i,J-I

m

+ _i'l ,J)

m

+ .044685 (_i+l,J+l
m

+ _i+l,J-I

m

+ @i- l,J-I

+ _m i) + h_ (0 29493)I - 1 ,J+
(v-10)

for the nodes along the y = 0, (i=l,J>2)

_m+l = 283945 (#_,J+ll,J

m

÷ _Z ,J" 1) + .173170 (_,j+l

+ _i,J-I) - .001627 (_ J+l
J

m

+ _3,J_l }

m + h 2(0.455731)
.089025 _3,J

(V-ll)

In the similar fashion the equation along x = 0, (i>2,

J=l)
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P_,lm+li = .283945 (Oi_ 1,2 + 0i+1,2 ) + .173170 (*i+l,1

66

4-

m m m
,i.l,l ) - .001627 (*i-1,3 + ¢i+1,3 )

+ .089025

m * hZ(0 455731) (V-I2)
*i,3

At point (x,y) = (0,0) the equation is given

m÷Z= Isz798(,; 3 ÷ + .343775 (,; 3 + *; 2 )
J P

+ .006854 ,; 3 + hz(1"178614) (V-13)

At point (x,y) = ([2,2) the equation is

m+l m + m m + m
*2,2 = .112834 (*1,3 ¢3,1 ) + .366S02 (*2,3 _3,2 )

m h=
+ .041327 @5,3 + (0.724753) (V- 14)

For the points (i=2,J>2) and (i>2,J=2), the equations are

respectively

m+l = 271649 (*;,3+1 4- *;,J-1 ) 4- 0 074144 (*;,34-1*2 ,J "

m _ m,j_l ),i,J.l ) 4- .042678 (* ,J+l + $3 +

m

.22305S $3,J * h=(0.388716) (V-15)
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cm+l cm + m m
i,2 = .271649 ( i+1,2 ¢i.1,2 ) + .074144 (¢i+I,I

67

era. m + cm1_1,1) + ,042678 (¢i+1,3 i-1,3 } +

m

4. .223055 ¢i,3 + h2(0"588716) (V-16)

Finally, for the points (i-l,J=2) and (i-2,3=I) the

formulas are

= .229057 ¢_,3
m

+ .416351 "4,.,
3

m

- .000786 ¢3,3

m

4. .2S6229 ¢'3,2
m

+ .099149 ¢3,1
4.

h2(0.917533} (v-17)

m
: .229057 _,..

I
m

m

+ .416351 ¢3,2

m

- .000786 ¢3 3 +

m

.256229 ¢2,3
m

+ .099149 _,..
3

h2 (0. 917533) (V- 18)

In this particular example the temperature at each node on

the north and east boundaries is known, making it unneces-

sary to write special equations at the two boundaries.

Equations (V-IO) to (V-18) represent the system of algebraic
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equations that must be solved for the unknown nodal temp-

eratures.

An iterative numerical procedure can be used to solve

the system of linear equations within some tolerance £.

V. 2.1 The Iterative Method of Solution

The application of the finite analytic method to the

problem has now resulted in a set of simultaneous, linear,

algebraic equations. As an illustration, let us consider

the grid size h to be equal to 1/4. This nodal point ar-

rangement is shown in Fig. (V-2). Observe that the nodal

points (I,5), .... ,(5,1) along the north and east boundaries

are all at zero temperature as given by the boundary con-

ditions of the problem. Thus, there are only sixteen un-

known temperatures. The Gauss-Siedel method is applied to

solve this system of equations. The computational procedure

_(0) for all the unknowns. An
begins with initial guesses i,j

each of the unknowns _[_J is then corn-improved value for

puted from Eqs. (V-IO) to (V-18). This iterative process

can be carried out until it converges. That is the dif-

ference between two iteratations within a required accuracy

m+l m

or [_i,j _i,j [ < c , where the value of E sets the error

criterion. For example in this problem, *1,1 requires

thirty-nine iterations to converge into four significant

figures.
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Y

_ =0

1,4 2,4 3,4 4,4

_X

1,3 2,3 3,3 3,4 = 0

1,2 2,2 3,2 2,4

1,1 2,1 3,1 1,4

Figure (V-2). The kegion with the
Corresponding Boundary
Conditions where the

Equation is Solved for
Comparison of Different
Numerical Methods.
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A method to accelerate the convergence of the itera-

tion process is the method of successive overrelaxatfon

{SOR). In this technique the update value _m+l at a given

i,j

node is replaced by the following equation.

m+l
m+l m m
i,j = ¢i,j " w(_i,j - *i,j )

(V- 19)

m+l

where _i,j is the value just calculated. The relaxation

factor w may be thought o_ as a weighting factor. For

w = 1 the new value of _ would be the same as calculated

in the Gauss-Siedel procedures. The method is underrelaxed

if o < w < 1 and is overrelaxed if w > i. In this

particular example, an overrelaxation value of w = 1.4

is used and the solution at _I,I converges into four sig-

nificant figures after fourteen iterations instead of

the thirty-nine iterations required for the Gauss-Siedel

method.

V.2.2 Numerical Results

We will now show the numerical solutions of the same

problem using finer grid size with h = 1/4 as shown in

Figure (V-2).

In order to discuss the finite analytic (FA) solution,

the problem given in this chapter is also solved by finite

difference (FD) and finite element (FE) methods which are

given by Mayer [17]. The numerical solution of the problem



71

and errors using FA, FD, and FE numerical methods are listed

in Tables (V-4) to (V-6). In all three tables the first

column is the location of the node as shown in Figure (V-2).

The second column is the exact solution of tLe problem,

the third column shows the numerical solution, and the

fourth column states the error of the method. The finite

difference solution given by Mayer [17] is based on 5-point

central difference.

The finite element solution gJ.ven in Table (V-6) is

based on variational formulation of the differential equa-

tion. In this t#o dimensional conduction problem a three

nodal-right triang'alar finite element is used. It is as-

sumed that the temperature varies linearly between the

three corner temperatures. To compare the finite analytic

method with the finite element method it ,#ill be instruc-

tive to look at the finite element equations for a nodal

spacing of 1/4.

From the tables it is observed that the finite analy-

tic solution gives more accurate solution than the other

methods. For example, at the node (2,3) the error of FA

-5
solution £s accurate to I0 while the finite difference

and the finite element solutions have errors of 0.0027

and 0.0006 respectively. At node (1,1) the error for FA

solution is -0.0001 while the error for the finite dif-

ference and finite element solutions are 0.0036 and

-0.0066 respectively. It should be remarked that the
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finite analytic solution does not have the truncation error

as in the finite difference approximation. The only approx-

imation made in the finite analytic solution is that the

boundary functions fECy), fs(X), fN(X), and fw(y) are ap-

proximated with a second degree polynomial. An improved

FA solution may be obtained if each subregion is made to

have five nodes on the boundary shown on dashed lines in

Figure (III-2). In this case the boundary functions rE'

fs' fN' and fw are approximated by a polynomial of fourth

degree, for example

rE(y) = a0 + alY + a2y2 + a3y3 + a4y4 (v-z0)

It should be mentioned that the FA solution is less

sensitive to the grid size than the other methods.



Node

1 ,I

1,2

II 3

!1,4

2,1

2,2

2,3

2,4

3,1

3,2

3,3

3,4

4,1

4,2

4,3

4,4

OF POOR QUALIT_

Exact

0.Z947 "

0.2789

0.2293

0. 1397

0.2789

0.2642

0.2178

0.1333

0.2293

0.2178

0.1811

0.1127

0.1597

0.1333

0.1137

0.0728

' Finite

Analytic
0.2948

0.2790

0.2294

0.1398

0.2790

0.2642

0.2178

0.1333

0.2294

0.2178

0.1811

0.1126

0.1398

0.1333

0.1126

0.0727

Error ' |
Exact -Approxt

-0.0001

-0.0001

-0.0001

-0.0001

-0.0001

0.0

0.0

0.0

-0.0001

0.0

0.0

0.0001

-0.0001

0.0

0.0001

0.0001

73

Table(V-4). Finite Analytic Solution

for Square with Heat Generation.
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qode

I

1,1

1,2

1,3

1,4

12,1

2,2

2,3

2,4

3,1

3,2

3,3

3,4

4,1

!4,2

14,3

4,4

Exact

"d. 2'947

0.2789

0.2293

0.1397

0.2789

0.2642

0.2178

0.1333

0.22.93

0.2178

0.1811

0.1127

0.1397

0.1333

0.1127

0.0728

Finite
Difference

{S-point)

0.2911

0.2755

0.2266

0.1381

0.2755

0.2609

0.2151

0.1317

0.2266

0.2151

0.1787

0.1110

0.1381

0.1317

0.Iii0

0.0711

I |m

Error

Exact-Approx
ml

0.0036

0.0034

0.0027

0.0016

0.0034

0.0033

0.0027

0.0016

0.0027

0.0027

0.0024

0.0017

0.0016

0.0016

0.0017

0.0017

Table(V-5). Finite Difference Solution

for Square with Heat Generation.



OF F'GC_R QUALITY

75

Node

I,i

1,2

1,3

1,4

12,1

2,2

2,3

2,4

3,1

3,2

3,3

3,4

4,1

4,2

4,3

4,4

Exact

ii | ii

0.2947

0.2789

0.2295

0.1397

0.2789

O.2642

0.2178

0.1333

0.2293

0.2178

0.1811

0.1127

0.1397

0.1333

0.1127

0.0728

Finite

Element

0.3013

0.2805

0.2292

0.1392

0.2805

0.2645

0.2172

0.1327

0.2292

0.2172

0.1801

0.1117

0.1592

0.1527

0.1117

0.0715

' " Er¥or ....

Exact -Approx

-0.0066

-0.0016

0.0001

0.0005

-0.0016

-0.0003

0.0006

0.0006

0.0001

0.0006

0.0010

0.0010

0.0005

0.0006

0.0010

0.0013

Table(V-6). Finite Element Solution for Square
with Heat Generation.
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CHAPTER VI

APPLICATION OF FINITE ANALYTIC METHOD

TO THE LAPLACE EQUATION WITH COMPLEX GEOMETRY

In this chapter a new procedure of implim_nting the

FA method is given. This procedure is for th_ problem

which has a relatively simple partial differential equation

and could be solved analytically. For example, finding

an analytic solution for a steady heat conduction with

constant conductivity, which is governed by the Laplace

equation in a problem with irregular geometry as shown in

Figure (VI-I), is almost impossible. Following, it will be

shown that the finite analytic method may be implemented

quite differently from the procedures used in the previous

chapters to solve the problem. Consider Figure (VI-I)

which shows the cross section of a groove bounded by two

slabs. Let the dimensionless temperature on top including

the groove walls be one and the bottom surfaces be norm-

alized to zero. Let the temperature at the side walls of

the slabs vary linearly from zero at the bottom surface to

one at the top. This problem will be solved by the FA

method for different sizes of groove and slabs dimensions.

In some engineering designs it is important to know the

effect of the groove sizes on the temperature distortion

and to calculate the heat flux at the bottom surface.
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VZ¢ =0

_L x2 _.L. x3 J
-1

T
Y1

J
=L

Y1

= 1

R1

fl(¥_
!
i

_=1

_=1

_=1

RZ T

I

f2 (Y)I Y2
,,I

,=0

, = 1

R3

T
Y3

1

Figure (VI-1). The Cross Section o£ a Groove in the
Slab.
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VI.I The Method of Solution

The finite analytic numerical solution to this problem

can be solved by two different procedures. The first is to

subdivide the problem into many subregions (as was done in

previous chapters) and solve every nodal value numerically.

The second is to subdivide the problem only into three rec-

tangular regions, RI, R2, and R3 as shown in Figure Of I-2)

where only 2N nodal points are assigned to the common boun-

daries of the regions R1 and R2 and regions R2 and RS. In

this case, the analytic solution for each region can be ob-

tained by separating variables once'the boundary conditions

on the common boundaries of the region are specified. The

common boundary conditions may be approximated by a function

of y (or a set piecewise continuous function) and the unknown

nodal values specified at N nodal points• That is, the

temperature functions along the boundaries between R1 and R2

and R2 and R3, fl(y) and f2(y) are approximated respectively

by the functions in terms of the nodal temperatures _I' _2'

•''#N and y and

' ' ' and y such as_I' _2'''''_N

fl (y) = fl(_l' _2"'''_N'h'Y)

f2(y ) = f2(g,_. , $_,...,$fi,h,y)

{VI-1)
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-TI
!

I
I
I

YI

_.._t

RI

l

! •

fz(y) _i

k.
V"

xl

_ _N

fiCY)

R3

_N

Y2 "_i

1.

1

x2

• R2

_i.

i_

*I

I
Y3

I
!

3_

h

X3 v

fl(Y)

!

_N

£2(Y)

Figure (VI-2).
Three Regions R1, R2, and R3 with
their Corresponding Boundary

Conditions.
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where h is the grid size and _I' _2"'''_N and _, _,..,_

are boundary nodal points.

The temperature distribution in each of the rectangular

regions _RI' _R2' and #R5 can now be obtained by solving the

Laplace equation with the corresponding boundary conditions.

Thus,

CRI -- fRl(_l' _2"'''_N 'h'x'y)
(VI-Za)

_R2 = fR2(_l ' _2"'''_N'_I ' _½,...,_,h,x,y) (VI-2b)

*R3 -- fR3(_i' _½,...,,_,h,x,y)
(VI -2c)

Each of the above solutions is the analytic solution respec-

tively to the regions RI, R2, and R3. However, only where

the unknown temperatures _I' _2"'''_N and _{, _,...,_

are determined, the equations (VI-2) provide the solution

for the entire region of the problem.

There are several ways of finding the unknowns _I'

_2"'''_N and _i' _2"'''_N" One of them is to generate

2N independent algebraic equations from the matching con-

dition that requires either the temperature or the tempera-

ture gradient (heat flux) must be continous at each of the

common boundary points.
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In this present work the FA method is applied to

finding the unknowns _i' _2"'''_N and _, _,...,_.

The solution's procedures are described as follows: As

the first step to attaining the solution, we select 2N

nodal points on the common boundaries (N nodal points on

each common line). Then, many square subregions C2hx2h)

can be constructed along each common boundary as shown in

Figure (VI-5]. The unknown temperatures _2' %3"'''_N-I

o,. _!and _½, _, ' N-I on each common boundary are the inter-

ior nodal points of these subregions. A typical subregion

around an interior node, located at the point [xl, yn) along

the common boundary between R1 and R2, is shown in Figure

(VI-4). TW's and TE's are the temperatures on the west and

east sides of the subregions respectively. In the sub-

regions along the common boundary between R2 and R3, @½,

_3"'" '_N-I are the interior nodal points as well as the

TW"s and TE;s are temperatures on the subregions' east and

west boundaries. For each element, a 9-point FA solution,

such as given in Table _[V-I), can be derived to relate the

centeral nodal value _n to the surrounding nodal values

TE(n+l), TE(n), TE(n-I), TW[n+I), TW(n), TW(n-I), _n+l and

_n-l' For instance, in the Laplace equation one has:

Sn _ 0.044685 [TE(n+I)*TE(n-I)÷TW(n÷I)+TW(n-I)] +

0.2051315 [TE(n)+TW(n) + _n-I + _n+l ] (VI-3)
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i

TW(N_.,.I ;

t."4- "J
I I

"l'W(n_
I I

"-4--'

r - -i,,...1
I i i
---ip- °,i

TW(1 f',* "_,
"t I I

TE(N) TW" !N). t ]...'rE" (N)

* 4 I
f- i-°_

TE (n) TN" (n) _TE" (n)

I I t
L.._- J
I t I

R2 t , ,
g'- 4-- -I

t ! I

TE (1) TW" (1) _-"-J, ,TE" (i)
T I I

R3
/
t

,I
Figure (vI- 3). Nodal-Point Arrangement on the

Common Boundaries.

TW(n+l) *n+l TE(n+I)

TW(n)

TW(n-1)

_n

_n-I

TE(n)

TE(n-1)

Figure (VI-4). A Typical Subregion Around an

Interior Node *n on the Common
Boundary.
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This finite analytic solution can be repeated for all

nodal points on the common boundaries. It should be

noted that the nodal values TE's TW's can be found from

the analytic solutions given in equations (Vl-2) in terms

' An itera-
of the unknown boundary nodal values @n or 0n.

tire procedure may be set up to solve the unknown nodal

Ivalues _n and 0 n That is to guess 0n (0) and 0_ (0) (for

all unknowns) as the initial trial values for 02, _3,..,0N_1

and 0 I, *_,...,0'N_1, then equations (VI-2) provide the
• f

solution for any point like, TE, TW, TE and TN in the

whole problem, which means the initial guesses for _n and

0n' will give us the initial values, TE(n) (0), TW(n) (0),

- " (0)
TE (n)(0) and TW (n) . Using the 9-point FA formula, as

was mentioned above, equation (Vl-3) will give us the new

' or:
values for interior nodal points _n and On,

m m m m
_m+l = 0 44685 [TE(n+I)+TE(n-I)+TW'(n+I)+TW'(n+I]
n

m m

+ 0.2051315 [TE(n)+TW(n) + _omn_l ÷ _n+i]m Cv'l-4)

m m m m

_n m+l = 0.44685 [T_(n+I)+TE" (n-I)+TW" (n+l)+TW'(n-1)]
m m

+ 0.2051315 [TE'(n)+TW" (n) + _mn_l + .,I,m+l] (VI-5)

This iterative process can be repeatedly carried out until

it converges. That is I,n 0 < c where s is the con-

vergence criterion.
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VI.I.I The FA Solution for

Subregions RI, R2, and R3

In order to have an analytic solution for each sub-

region RI, R2, and R3 let us first approximate the boun-

dary condition fl(y) and fz[y ) respectively by a piece-

wise polynomial (i.e., segmental polynomial) so that the

problem may employ any arbitrary number of nodal points.

For simplicity and flexibility, a set of piecewise second

degree polynomials in finite subintervals is chosen to

represent the fl(y) and fz(y). Therefore, the function

Pi[y) is a polynomial of the second degree on the subin-

tervals [91, 92 , _5), (_3' _4' _5 )' ..... '[_N-2' _N-I' _N )

shown in Figure [VI-5), or:

• ,2
Pi[Y) -- C0i + CliY + C2iY 0/1-6)

where

C0i = _i-2

Cli = _q{ _i-2 + 9i-I _r_ 9i

C2i _ 9i'2 " h-_ 9i- 1

The boundary function fl(y ) on each interval (9i_ ],2,

_°i-I' 9i) may be written as



4

fl(Y) --Pi (y')

ORm!"; ")

(i-2)h < y _< ih (VI-7)

85

Similarly, the boundary fz[y) may be written as

f2 (y) = Pi (y'), (i-2)h < y < ih (VI-8)

where P'i(_) is a quadratic polynomial on each interval

(_i-2' _i-l' _i)" After specifying fl(y) and f2[y), the

analytic solutions _RI' _R2 and _R3 for subregions RI, R2,

and R3 may be obtained as follows:

Region RI: V2_R1 = 0 (VI-9)

x=0, ,=L..

X = xl,
= Sfl(y) Y2 > y > 0

1 y > Y2

y =YI,

= 0

= 1

Region R2: V 2 = 0
_'R2 Cv'I-lO)

X m 0, , = fl(y)

x = x2, tV = f2 (y)
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(i-2)l

L

N

ON-1

',0N_ 2

*i-I

*i-2

'- *3
2 _2

'V1

7 i>'

Pi {y) ] Y'

Figure (Vl-S). The Functiona: Approximation
for the Common Boundaries.



OF POOR QUALI_ 87

Region R3 : _2 = 0
¢R5

X = 0,
_f2(y) Y2 • y > 0

_0 m_

!1 y>Y2

(VI-11)

Y
x = xS, _ =:i-_

y=0, _ = 0

y=Y3, ¢ = 1

The above problems are solved by the separation of

variables. The solutions %RI' _R2 and ¢R5 involve only

2N-4 unknown nodal values _2' ¢5"'''_N-I and %½, %5"'''_N-I

since the nodal values _I' _N' _I and %_ are known or

= = ' = 1 It should be noticed that if_I _ = 0 and _N _N "

the 2N-4 unknowns along the common boundaries are known

the solution for the temperature distribution of the problem

is found.

VI.I.2 The FA Solution for Subregion RI

The analytic solution _ for region RI with governing

and boundary conditions (equation (VI-9)) can be obtained

by the separation of variables. Since the Laplace equation
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is linear, the solution to the subregion can be superposed

by three solutions with simpler boundary conditions:

CRI = ¢I + ¢2 + ¢3 (VI-12)

These three simpler problems and their boundary conditions

are thus:

Problem (I): v_¢ 1 = 0 {VI-13)

x-O, ¢1=0

X =xl,
¢I = {_l(y) 0 < y < Y2

Y2 < y < Y1

y " O,

y= YI,

Problem (2): V2¢ 2 = 0 (VI-14)

X = O,

X = xl,

y = O,

z=YI,

¢2=0

¢2=0



problem (3):

DE POO;( • ' , :Y

V2_3 - 0

x'O, _3 "0

-,0
x = :(1, _3

89

Cvz-lS)

E

Z _

-0
= O, _:3

),
= 1

: YI, _3
Y

When the above problems are

has the solution

solved and

+ G2¢2+...+G2i-l¢2i "I
_RI = GI_I

... + GN¢ N + GN+ I

superposed one thus

÷

+ G2i _2i

Cvi-16)

where

G 1
k=l

G2i-I

G2i

2 D Ik sin(xlk Y) sinh(XlkX}
-'---_" h

- Z 3k + D Ik 2) sin(_IkY)

Z '_ (DZi-4 2i-

k-I

s inh(Xlk x}

2k

. ;  D2i.2
k-1

sin(XlkY) s inh(Xlk X)
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GN =

® 2 _- 3kDN-3
S 71 sinh[XlkXlJ

k=l

I
2 -- J

X _I sinh[Xlk xl} Xlk
k=l

sin(XlkY) sinh(Xlk x)

[cos (X:Lk,Yz) "

cos(k_)] sin[XlkY) sinh(XlkX) +

® ZCOS _k__) sin(XlkY) [sinhCXlkY) "

£ _t anh [XlkX_
k=l

" 4 sin' (k IZl.
+ Z _sinh(¢ IkYl)

tanh (XlkXl) coshCXlk x)] k=l

sin(ulk x) sinh(_Ik Y)

k_ k_

and x 1 = y--T' ul " x-'_'

The coefficient D's are

D_ k = Alk

D_k3 . A3k cos(N_3)x k h + B3k

Jk
D n = Ajk

sin(N.3) x k h

cos Cn. 3)X k h ÷ Bjk sin(n'3)Xk h

(VI-17)

where

region RI.

j - I, 2, 3, 1 < n < N, and xk " Xlk for sub-

The coefficients h's and B's are:

1

Alk =

1__ . 1

1 sin (2 Xkh) + Xk

cos (2 Xkh) ÷
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_ 2 sinf2Xkh) + 2
A2k " " X_ c°s (2Xk h) 2X-_kh

1 + 1 ) + 3 1

= 1 _ 1 + 3

Blk 2X-_kh c°s(2Xk h) Xk-_ sin(2Xkh) 2X-_kh

= _ 2 sin(2Xkh ) . Xk-_hB2 k X__kh cos(2Xkh) + x_ 2

= 3
3k c°s (2Xkh) + (1 I ) sin(2Xkh ) + 1

(vi -18)

Again, for subregion RI,X k = Xlk. From the solution given

above, the corresponding solution for the derivatives with

respect to x and y (which is needed in evaluation of the

heat flux)can be easily derived. For example, by differen-

tiating the equation (VI-20) or (VI-21) with respect to y

we have :

_PR1

_y = Gyl* 1 + Gy2* 2 + ... Gy(2i_l)¢2i. 1 + Gy2i02i

+... + GyN$ N + Gy(N+I )
(¥I-19)

where
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Z_ Ik -D Ik cos(_'lk yj sinh(XlkX)

G_I = k_l _I si_hCXlkxl)

® __ . . 2i -_-

= Z y--_--sinh [klk xl}
Gy(zi-_) k=l

cos[XlkY) sinh(Xlk x)

Gy2i

GyN =

Gy(N+I]

2X Ik 2k cosC_ikY) sinhCXlk xj

k-I

,,= 2k Ik D_ k. cos(klkY) sinh(XlkX)

Z yl s inh [klk xl_ 5
k=l

® 2 [XlkXl_[Co s [klkYl).COS (k_)]
Z yl sinh

k=l

= 2XlkCOS (k_)

cos[XlkY) sinh(Xlk x} + k=IZ _t'anh{XlkXij

cos(XlkYJ[sinhC'll kxj " tanh(XlkXl}c°sh(XlkX) ]

÷ Z

k=l

sin(ulk x) cosh(_Ik y)

kx k_

where Xlk = _'[' _lk = x--[

VI.I.3 The FA Solution for Subregion R2

The same procedure used for subregion R1 may apply

to solve the analytic solution *R2 for subregion R2, given

in equation (VI-10}. We thus have
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¢R2 " Q1 @I + "'" + qZi.l*Zi-I + Q2i _2i
OOo QN_N ÷

_2i ÷ "'"

(Vl-20)

where

Q1 " };
k-I

, D_k&,

_r2 tanh(X2k x2.)
sin(xzkY) [sinh(X2k x)

Q2i-I

tanh(X2kX2) cosh(X2k x)]

E

k =I

2 3k

t_nh(_Zk_ (D2i-4
Ik 23÷ D2i. sin(x2k x)

-tanh(X2kX2) cosh(X2k x)]

= Z
Q2i k=l " y2

2 2k

t"anh('X2kX2) D2i-2
sin(X2kY) [sinh(X2k x)

-tanh(X2kX2) cosh (XZk x)]

em

" _: y2
QN k-I

2 3k

t anh (x 2kX2) DN-3
sin(x2kY) [s £nhr.X2kX)

-tanh(X2kX2) cosh (XZk x)l

-Z °°''
Q{ k I y2 sinh(XzkX_

sin (X2kY) sinh(X2k x)
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Q2i-I = E
k_l

3k
2 (D2i.4

y2 si'nh (X2kY2)

+ D Ik
2i.2 ) sin (X2kY)

sinh(X2k x)

® 2 2k

Y _2 sinh(X2kX2) D2i-2k,,l
sin (X2kY) sinh (X2kX)

k i y2

2

sinh(X2kX2)
D3Nk5 sin(k2kY) sinh(X2k x)

Q' = z
N+I k-l

4 sin (kTr/2) sinh(u2kY )
k_ sinh(u2k_ sin(u2k x)

The D's have the same definition as before (equations (Vl-17)

k_

and (VI-18)), but Xk " X2k for subregion R2, X2k " y--_and

k_ @¢R2 @$R2

U2k = x--Z" Again the @y and @x can be obtained easily

from the solution _R2 equation (VI-20).

@¢R2

@y " QyI_I + ... + Qy(2i_l)¢2i_l + Qy2i$2i + ...

!

QyNCN + QyI ¢i + "'"
+ Q, #,

y(2i-l) 2i-I

yNSN' i_2 + "'" + Q' ' + Qy(N+I)+ Qy2 i (VI-Zl)

where

® 2X2k

- Z y2 tanh(X2'kX2)Qyl k-1
Dlkcos (Xzky) [sinh (XzkX)
0
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. tanh(X2kX2) cosh(X 2k x)]

oo

z
k-1

2x 2k 3k

" _2tanh(X2kX2) "(D2i'4

[sinh(X2k x) - tanh(X2kX2)
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, D lk 2) cos (X2kY)2i-

cosh(X2kX)]

Qy2i = k_=l

2X2k 2k cos(X2kY)[sinh(XzkX)
_2tanh(X2kX2) D2i-2

.tanh(XxkX2) cosh(X2k x)]

qyN = zk=l

2X2k _ D 3k
_r2t anh'(X 2k x2) - 3

cos (X 2kY) [sinh(X2k x)

-tanh(XzkX2) ]

!

qy(2_-l)

2X2k D_kcos (XzkY)

_= 2X2k _ (D 3k
= 2i-4

k 1 _2sinh (X 2kX2)

s inh (X 2k x)

+ D lk 2)cos(X2kY)2i-

s inh (x 2kY)

qy2i 1

QyN " k-l

2X2k _2k cos(X2kY) sinh(Xzk x)
_r2s inh (X 2kX2) u2i'2

zxzk _ _k cos(XZk/) sinh(xzkx)
yzsinh(xzkxz) D 3

Qy(N+I) k-l

4u 2ksin 2 (k./2)

l_s inh (X2k yl)
•sin(u2k x)c°sh(u2ky)
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VI.I.4 The FA Solution to Subregion RS

FA solution for subregion R3 {equation (VI-ll))

the separation of variables, is:

96

_R3
÷ S2i.l@_i-1 + Szi#_i" St*i * SZ*_÷ ...

÷ ... + SN# _ + SN+ I
(VI -22)

where

" z bolk
S 1 -- Z y3tan(Xk= 1 3k x3_"

s in (x 3ky) [s inh(X 3k x)

-tanh(X3kX3) cosh(X3k x)]

® 2 3k
(D2i-4

= z - _3t anh (X
Szi-I k=l 3k x3)

+ D Ik
2i-2 ) sin(X 3kY)

-tanh(X3kX3) cosh(X3k x)]

® 2 2k

z y3tanh(X D2i-2Szi k=l 3kX3)

s infX 3ky) [sinh(X 3k x)

L

m_

J

,r

-tanh (X 3kX3) cosh(X 3k x)]

® z 3k )
SN = r. - y3tanh(X3x3 j DN. 3 stn(X3kY

k=l

-tanh (X3kX3) cosh (k3kX)]

[sinh (),3kx)
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SN+I
- z

k=l

2 l_!_.[ co s (), 3kY2)
" y3tanh()'Sk x3)'" )'3k

- cos (_)1

[sinhCX3kX) -tanh(X3kX3) coshC_3k x)] -

® Zcos (k_)
Z k_sinh(_3kX_ _ sin(X3Y) sinh(X3k x)

k=l

÷

® 4 sin 2 (k=/2) inh(u3kY )
X k sinh(_3k x3) sin(_3kX) s

k=l

And :

aCR3
S

_Y
S !

yl_l
. ... ÷ s __i-I÷ s *_.i"'"

y(Zi-l) yZi

SyN¢l_ + Sy(N+I)
(vl-z3)

where:

Syl
. E

k=l

2 ), 3k D0lk
y3tanh(X3k x3)

cos (X3kY) [sinh(X3k x)

-tanh(X3kX3) cosh(X3k x)]

S
y(2i-1)

® 2 X3k 3k

= Z " y3tanh( (D2i-4
k=l X3kX3)

Ik
+ D2i_ 2)

cos(x3kY) [sinh(X3kY) tanh(X3k x3)

cosh(X3kX)]
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Sy2 i =
z

k=l

2X3k 2k

y3't anh (x 3kX3)" D2i-2
cos(X3kY) [sinh(X3k x)

-tanh (X3kX3) cosh (X3kX)]

Sy N =
r.

k=l

2X3k

- y3t &nh (X 3kX3" )
DN3k_3 cos(X3kY)[sinh()-3k x)

-tanh (X3kX3) cosh (X3kX) ]

Sy(N+l)
" 2X3k (cos (X3kY2) -

= E - 7-_,_''_tanhfx3kx3_k=l

cos(k_)]

cos (x3kY) [sinh (X3kY) -tanh(X3kX3) cosh(X3k x)]

. 2cos (k_)

X y3sinh (X 3kX3)'k=l

cos (x3kY) sinh(X3k x)

÷
" 4 sin 2(k_/2)

Z xZsinh (_ 3kY3 )
k=l

sin(u 3kx) cosh (u 3kY)

Again, the D's have the same expressions, as given in

equations (VI-17) and 0/1-18), for subregion R3 Xk = X3k,

k_ k_

X3 k . y--_, and X3k = x--'_"

As was mentioned, if the unknown temperatures, 02,...* N

and ,i,O_,...O_ are predicted, then equations (VI-16) (VI-20)

and (VI-21) will provide the solution for any point in the

respective region.
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VI.2 Steady Two Dimensional Heat
Conduction with Groove

In industrial machines, it is often necessary to have

a groove in the solid slab. For example, the oil reservoir,

in bearing thermocouple, is good for temperature measure-

ment. Instalation of such devices produces grooves in the

pipes or channels, causing distortion in the temperature

distribution and heat flux. A typical two-dimensional groove

is shown in Figure (VI-I). In order to solve this problem

with the FA method the entire region is subdivided into

three subregions, RI, R2, and R3, as shown in Figure CVI-2).

The analytic solution for each of these subregions was ob-

tained in terms of unknown nodal point variables _i' _2"'"

_N and _, _½,...,_ which are equations C¢I-169, (VI-20),

and [VI-22). In this section the finite analytic solutions

of the problem are obtained by combining the three analytic

solutions in the subregions. In order to obtain the nu-

merical results the iterative method described in Section

(VI-I) is employed, the procedure of which is briefly out-

lined here. The following calculation steps for the finite

analytic algorithm are also depicted in the flow chart given

in Table (VI-I).

(a) Start with an initial guessed approximation of

for all pointsthe temperatures, _ 0) and _n '
I ( 0 )

(n) on the common boundaries.
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(b) Find the temperatures TW's, TE's, TW's and TE's

from the analytic solution in each subregion or

equations [VI-16), (VI-20), and (VI-22) respec-

tively (TE's and TW's are obtained from the

same equation _VI-20)).

(c) Employ the 9-point FA formula (equation (VI- 3 ))

' as described in the
to find the new _n and _n

equations (VI-4) and (VI-5).

(d) Repeat steps (b) and (c) until a convergence cri-

terion is met.

(e) Once the temperatures _i' _2"''_N and #_, #_,...

_ are known the analytic solution for each sub-

region RI, R2, and R3 (equation (VI-16), (VI-20),

and (VI-22)) may provide the solution at any

desirable point in the whole region. The temper-

ature gradient at any point is also available

from equations (VI-19), (VI-21) and (V1-23). The

numerical results for the steady two-dimensional

heat conduction with three different sizes of

groove, as shown in Figure O/I-l), is presented

here.

In all three cases both isotherms and temperature, the

gradient on the bottom surface of the slabs are plotted in

Figures (V[-6), (VI-7), and (VI-8). [n these figures the

isotherms are plotted with a temperature interval # of
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, , ,L._ | ,

Ist °.ndO:.n-1,2Ne m=O ) @n Yn ) '" " ")

....lculate the temperatures TW(n), TE(n),
" (n) and TE (n) from the equations

| (vz- 16), (vz- 2o), and (V_- 22).

Interna'; 'iteration on the common boundaries
by using 9-point FA formula and finding

the new values of qJn' qJn"

I Step

Step

Step

Ca)

(b)

(c)

Has the

alCulate the temperaturest any desired point.

STOP

solution converged?

. [ Yes

and heat flux

I Step

Step

(d)

(e)

Table (VI-I). The FA Algorithm
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.2S. It should be noted that the number of nod.os used

to form the temperature function on each boundary is

chosen to be five (N-5) in the present calculation.

Vi.2.1 Numerical Results for

Symmetric Groove

The solution to the problem with the groove between

the symmetric slabs is shown in Figure (IV-6). In the

calculation the geometry is taken as xl - 3, YI = 1, x2 = .5,

Y2 = .5, x3 = 3, and Y3 = I. The temperature on the top,

including the groove walls, is normalized to one and zero on

the bottom surfaces while the temperature on the side walls of

the slabs is assumed to vary linearly from zero at the bottom

to one at the top. This is to simulate the temperature

distribution at the large distance from the groove, where the

heat conduction is essentially one-dimensional in the y direc-

tion and the temperature distribution is linear in y. If

we take five nodal points on each commcn boundary, there will

be a total of six unknown temperatures ¢2' _3' _4' _2' _'

and _ in this finite analytic procedure because the temper-

ature is at the bottom and top of each boundary _I " _1 = 0

and _5 = _S " I are known from the bc ndary conditions.

The numerical results are obtained by successive iterata-

El tion of
l the nodal values on the common boundarles with the

_ calculation procedure discussed in the previous sections. _
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to begin the iteration are chosen as a linear function of

,0 '0y, that is = ¢ •n n Yn (n = 1,2,... ,N). The FA solution

converges after twelve iterations within the error of 0(10"_).

I

The corresponding nodal values *n' *n and also the tempera-
• J

tures 2M(n), TE(n), TW (n) and TE (n) (n = 1,2,3,4,5) are

presented in Table (VI-2). Since th_ temperatures at the

common boundaries are known, the solution for the whole re-

gion can be calculated from the analytic solution given in

equations (VI-16), (VI-20), and (VI-22). The temperature

C_yl_q'gradient on the bottom surface )can also be obtained
0

from equations (VI-19), (VI-21) and (VI-23). The isotherms

and temperature gradient on the bottom surface are shown in

Figure (VI-6). It shows that the temperature and heat flux

distributions for the square groove extend to about the

groove's width.

VI.2.2 Numerical Results for

Unsv_metric Groove

This problem is almost the same as the previous problem

except the geometry is unsymmetric. The slab thickness

on the right is set Y3 = .75 instead of Y3 = l and the other

dimensions are kept the same as before. The numerical re-

sults of the FA solution for the temperatures on the common

!

boundaries *n and *n and TW(n), TE(n), TW (n) and TE (n)

are listed in Table (VI-3) as well as some isotherms and

temperature gradient for this problem are plotted in
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n TW(n)

0.0

0.1974

0.3965

0.5965

0.7719

_n

0.0

0.2128

0.4334

0.6769

1.0

TE (n)

0.0

0.2263

0.4618

0.7182

1.0

J

T.4 (n)

0.0

0.2263

0.4618

0. 7182

1.0

n

0.0

0.2128

0.4334

0.6768

1.0

S

":. (n)
|1

0.0

0.1974

0. 3964

0.5964

0.7719

Table (VI-2). The Numerical Results for the Unknown

Temperatures on the Common Boundaries

and Temperatures TW(n), TF.(n), TW" (n),
and TE(n) for Symmetric Groove.
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Figure (VI-6). rsotherms Distortion and Temperature
Gradient Distribution for Symmetric
Groove.

(a) Distortion of Isotherms Near the
Groove.

(b) Temperature Gradient Distribution
on the Bottom Surface of the Slab.
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n

1

2

3

4

5

Table

0.0

0.1976

0.3967

0.5967

C.7720

n

0.0

0.2132

0.4.340

0.6773

1.0

(iv-3).

TE (n)
e

0.0

0.2271

10.4630

0.719i

1.0

TW'(n)

0.0

0.2297

0.4674

i0.7229

1.0

n

0.0

0.2192

0.4448

0.6890

!.0

TECn)

0.0

0.2084

0.4177

0.6262

0.8096

The Numerical Results for the Unknown

Temperatures on the Common Boundaries

and Temperatures TW(n), TECn), TN_n),

and TE_n) for Unsymmetric Groove.
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Figure (VI-7). It illustrates the maximum heat flux in

the groove which has shifted to the right.

VI.2.5 Numerical Results for

Step Groove

In this problem Y5 = .S and the other dimensions are

kept the same as before. The numerical results to this

problem are shown in Table (VI-4). Some isotherms and a

temperature gradient (on the bottom surface) are also shown

in Figure {VI-8).

VI.3 Discussion

In this chapter a different procedure of the FA method

was described. Although this solution procedure is demon-

strated for the Laplace equation with simple boundary condi-

tions, it can be extended to other linear partia! differen-

tial equations with more complicated boundary conditions.

In this new procedure for the FA solution the probelm was

subdivided into only three subregions instead of subdividing

it into many subregions as in the convention procedure of

the FA method. This is only possible when the governing

equation in each subregion can be solved analytically with

corresponding boundary conditions. The FA analytic solution

thus is continuous and differentiable in each subregion

domain. The errors in this FA method are introduced only

on the function used to approximate the common boundary
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2 3 ¢
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Figure (VI-7). Isotherms Distortion and Temprature
Gradient Distribution for Unsymmetric
Groove.

(a) Distortion of Isotherms Near the
Groove.

(b) Temperature Gradient Distribution
on the Bottom Surface of the slab.
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II

Table

TW(n)

0.0

0.1983

0.5978

0.5976

0.7724

_n

t

0.0

0.2146

0.4561

0.5789

1.0

OF PGOK ("'"' ,Tv

TE (n)

0.0

0.2302

0.4676

0.7225

1.0

#

TWCn)
Ill

0.0

0.2428

0.4891

0.7416

1.0

!

_n
i

0.0

0.2429

0.4883

O. 7389

1.0

m

TE (n)

0.0

0.2464

0.4944

0.7455

1.0

(VI-4). The Numerical Results for the Unknown

Temperatures on the Common Boundaries

and Temperatures TW(n), TE(n), TWin),
and TE(n) for Step Groove.
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(b)

X

Figure (Vl-8). Isotherms distortion and temperature

Gradient Distribution for Step Groove.

(a) Distortion of Isotherms Near the
Groove.

(b) Temperature Gradient Distribution
on the Bottom Surface of the slab.
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conditions. In this present study the piecewise contin-

uous second-order polynomials are used to approximate the

common boundary conditions, thus the FA method's error is

of the order (h3). The errors can be reduced if the common

boundary functions are approximated by higher order piece-

wise continuous polynomials or third degree spine functions.

It should also be noted that the present problem can be

solved with more complicated boundary conditions on the top

and bottom surfaces instead of one at the top and zero at

the bottom. In such a case the FA solution can be obtained

by the same procedure for equations (VI-16) and (VI-19) to

(VI-23). The only change needed is that [he N+Ith coeffi-

cients for the equations 6VI-16) and (VI-19) through (VI-23)

are reevaluated for the new boundary condition_.
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CHAPTER VI I

CONCLUSION AND SUGGESTIONS

The finite analytic (FA) method introduced by Chen

and Li [3] was applied to solve the Poisson equation nu-

merically. The FA method utilizes the analytic solution

obtained in a subregion of the problem to form the alge-

braic functional relation between a nodal value in the sub-

region with its neighboring nodal values. In the present

investigation many FA formulas with different kinds of

boundary conditions were derived. The accuracy of the FA

method was examined for the case of the Poisson equatior

which represents a two-dimensional heat conduction in

rectangular shape with uniform heat generation having two

insulated boundaries and two isothermal boundaries. In

this case, the FA solution was compared with the 5-point

central finite difference (FD) solution and the finite

element (FE) solution and also with the exact solution.

The FA solution was shown to be more accurate than the

other methods under the same overall conditions.

Another new solution procedure utilizing the FA method

was applied to solve the Laplace equation with complex

geometry. In this new procedure, instead of subdividing

the problem into the regular small subregions, the problem
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was subdivided into regions where the common boundary

conditions are approximated by a piecewise polynomial that

the analytic solution can be obtained. In the example

considered, three large subregions were considered and

the 9-point FA formula is only used for the boundary

nodal points.

The finite analytic {FA) solution,although requiring

more analytic manipulation,involves the following advan-

tages :

i. The computational time for the finite analytic

solution is not a problem for the linear partial differen-

tial equation because the finite analytic coefficients are

invariant and can be calculated once for each subregion

with the same type of boundary conditions.

2. The accuracy of the FA solution, although depending

on the grid size, is less sensitive to it than the FD

solution. Indeed, the only approximation made in the FA

method is that the boundary functions rE' fs' fw' and fN

are approximated by second-degree polynomials.

3. The algebraic equation system, derived from the FA

methods is stable and has faster convergence rates.

4. The FA solution is differentiable so the derivative

of the dependent variable obtained from the FA method is

generally more reliable.
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Regarding the suggestion for the further use of

the finite analytic method it should be remarked that

the application of the finite analytic method is not

limited to the partial differential equations of heat

transfer problems. The FA method is a general numerical

solution technique for problems involving either ordi-

nary differential equations or partial differential ones.

The principle of the FA method may be readily extended to

the three-dimensional problems. In the case of steady

three-dimensional heat conduction problems, the local

subregion may be a rectangular cube and the finite analytic

formula (similar to equation (VI-4)) may be derived. The

FA method is especially powerful in solving the governing

equations with linear partial differential operator of con-

stant coefficient because the subregion may be taken rela-

tively large. In case of nonlinear partial differential

equations, normally the local linearization is made to

obtain the local analytic solution. In this case, the FA

method requires the local linearization and the approxi-

mations of the boundary conditions. However, the FA method

eliminates the error in using difference approximations

due to the Taylor series expansion of the derivatives as

with the finite difference. The FA method minimizes the

problem of the numerical diffusion that happens to the

upwinding approximation used in the finite difference or
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finite element methods when the coefficients to the lower

derivative terms are large (i.e., large Reynolds number

flow in fluid mechanics problems). The accuracy of the FA

solution ma)be improved by using higher degree polynomials

on the bou_,daries. In this case a 17-point FA formula can

be derived with fiv_ nodal points on each bounlary so that

the boundary functions are approximated by a 4th degree

polynomial.

Further details o_ numerical treatments and analytic

solution techniques used in the present investigation refer

to references [18] through [25].
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OO1O5(:
00110C
00120C
00130C
O01aOC
00150C
00160C
00170C
00175
001T6.
00180
001g0*
00200
00201C
00220
00230C
O02aOC
oo2alc
002Q2C
00_52C
00460
00470
00_80
ooa9o
00500
00510
00520
O0530
005_0
00550
00560
00570
00580
00590
00595C
00600C
00610C
00620C
00630C
006_0C
006_5C
00650
00660
00670
00680
00690
00700
00710 33
00720
00730 111
007_0
00750
:0755
30760
00770
00780
00790
_0800
00810
00820
00830

APPENDIX A

THE FA SOLUTION OF TWO

DIMENSIONAL HEAT CONDUCTION

APLIED 7INZT_ I_ALTTZL fiE'HOD
TgO DInENTIO_iL STE ADY STATE H_T CC_00C-
TIO_ gITR CO_ISTANT HEAT GE_RATION.L_7_
AND LORZR SIDES ARE ADZARATIC. RIGRT J_E
UPER SIDES ARE &T 0 DEGREE.

A GAOSS-SZIDZL ITZ31TIO_ IS ZRPEOTED.
eeeeeue*eeeeoe_seseesieewoeeomlmeeeeoeeeeo

PROGRAfl ?DT(I_?UT,OUTPUT,RESULT,TAPES-IBPUT,
TAPE6mOUTPUT,TAPEg-R:SULT)

DI_E_SION AA (9) ,AB(9) ,A_ (9) ,AD(9) ,|E(9),
IF(9),AG(g),_H()) ,AI (9) ,T(10,10)
READ.DX,DT,N,ITR_Z,EPS
N IS ROBBER OF DZ ON A SIDE

G_DZ/DT

T +T 8-1
ZZ TY

CALL CO_F I(DZeDYeG,AA)
PRINT (9,301)
PRINT (8,302), (AA (Z) ,I-1,9}

CALL COEP 2(DZ,_T,G, AB,AC)
PRINT (8,30 3)

PRINT (8,30_) , (AB(I) ,AC (1),I81,9)
CALL COEP 3(DX,DT,G, AZ,AF)
PRI,IT (8,305)
PRI:;T (8,30q) , (_E (I) ,AF(1),I-I,_)
CALL COEP cl (DX,-'YeGe_DeAG,AHeAZ)
PRI._T (8,306)
PRI:'T (8,30_), (AD(I) ,AG(Z) ,I-I,9)
PRINT (8,307)

PRINT (8,30_), (AR(I) ,AI(I),I-1,9)

eeeoooe_oomoeoooomooeoeoooeeeeeoeeooeoeeoeeoo_ooomoooo_

ALL THE COEFFIZI_NTS :lOW ARE K_OWN .
LET 05 SCLT_ THE STSTER OF EQUATIONS _O GET THE
RORERICAL SOLOTIO_.
oooooeoooeeeoeooomoeoo.o.ooooeoooeoee_ooeRo_e_eoeeoo_oe

IIP18 N*l
DO 33 I'I,_Pl
T (I, 3P1)"0.0
DC 33 Ju1,gP1
T (RPI,J),'O.O
DO 33 JJs2,'IPI
T (Z,J)'O.O
ITEB"O

DO 2_0 I"1,_
DO 2_0 J,'l,._
ROLDT-T (I,J)
ZIP(I.E,. 1.A_D.J. EO. 1)
I7(I,.-._.I.AND.J._O.2)
Ir (I.!o. 1)
IF (." .E'_. 2 .A'O .J. "O. 2)
IF(I.E¢.2.A_D.J. EO. 1t
X_(Z.E_.2)
IP (J.][O. 1)
I!' (J. EO. 2l

GO TO 200
GO TO 300
GO TO ;00

GO TO 600
GO TO 500
GO _O 700
GO TO 800
GO _0 900



008_0
00850200
00860*
00870
00880300
00890*
00900
00910 _00
00920,
00930*
009_0
00950 500
00960*
00970
00980 600
00990.
01000
01010 700
01020*
01030*
010_0
01050 800
01060*
01070*
01000
01090 900
01100*
01110*
01120
01130 112
011q0.
01150*
01160 2_0
01165
01170
@1171C
Gl172C
Ql180
Ql190
Q1200
01220
01225
31230 119
012q0 999
31250 301
01260*
31270 302
01280,
01290*
01300*
01310 303
01320*
01330*
013_0'
01350 30_
01360*
01370*
01380*
01390 305
01100,
01110,
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01B20.

01B30 306

01q_0.

01_S0*

01_60 307

01_70 29B

01_80.

01190.

01S00 399

01S10 _01

01S20
01521C

01522C

01530¢

015_0¢

01550¢

01S60C

01S10¢

01S80

01590

01591

01600C

01610C

01620C

01660C

01670¢

01680C

01710¢

01720¢

01730C

017_OC

317_1_

017_2C

)1750

)1760 10
)1770

01780

01790

31800

01810

01820

310JO I

)18_0.

31050

31860 2

01870
_1871 3

01872.

0187)*

01900 20

01910

01920

01921C

01922C

01923C

15Z,Oli_ (Z) *,12%,oAP ([) */)

fO,qnAT(/13X.,rrR _L"RZ._ T OGIqT, AO(t) ,IG(%) .A_(I) o/

)X,OWH][CH SO_Pc_O;J_b P ._._ Q.e//15X,ekC(Z) e,12X_ekG (I) e/)

FOREAT(/l%X,e_,H (_) •.12X,o_£ (I) */)

/]]I[,eCO:I_TA_." lib'E? ,_I_I_RATZCN Ill A IF'T,I'[ 1P|j?I_ IZ?He/

)1(, *P P,lt P,.'qrT Y,gS. */I

tOni*At/SZ, t'l "*, _:,1/3Z, e :?Hi][ "e, X.]/)

?O_FIAT(JX_eTH. _ TEfli)IRiTOR_ F£[LO TS GII|N eye/)
gXD

till lliillt lilt liitiiliilililllillll lllll illtlllllll

?'INO THI_ COJ'PP;CZ_,'Ig_ FOR _I Z_e._T k

A(I) _:_ TM_ COZ_.'I"_,'/TS OF TH: POINT_ VflICH
SORRCU?IO POI?;T ?.

SUBROI_?I,'I_ COS? I(DXeDTeGe&&)

PX-3. I_1_92e,Sw

aa (3) I (2) axle)
.i •

: P: :

t (_) : * .Eft)
: : :_

sv (_) s (6) s[(7)

DO 10 Ztl,O

DO 20 J-1,2%

B-(PI/2.)*J
K-2eJ-1

I'{PII2.)*K

GO T0(1,2,1,2,1,2,1_2,3) ,I

AAA ..( I ./B- : ./9 e. 1) * (SI,_h (_tG)/SI ,'WH(2. e_ *G) *SINH (D/G)

/SI SH (2.*B/G)) *_ 1_ (Of

GO TO 20

&kk,.W./_** JeS IS (_) *$ ['lfl (t_eG) /$I._ H ( 2. $B*G)
GO TO 20

&ki"2.*CXe*2/I'** )*5TNMiPIG) *SI'Z (p) * ( 1.1'TkNH

(2. eBl,_) - 1.15;:;, (2.*9/_-.) * l.ISl_/,_. (P/G) * l./'_'A.q_

(el(;))
k,_ (1) "kk (1) _Akk

RETURN

E_D

O|_]O_eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeseeteeseeee

019q0C r[_O THE CO_FRIC£S',TS ?_ ?L_?_T 8C,

01150_ AB(I) &_O 4C(I) A'S :_:PPICI£qT_ ('P TM_ ICZ_TS

01_60C VHICH SO_PC_4D P01475 ? _YD 0 q_$PSCTIIrLI.
01_?OCeeeeeeeseeeoeeeeeeeeeeeeeeeeeee_eeeeeeeeeeeeeeeee

01971C
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019110
01990
01991
02000¢
02010¢
02020C
02060¢
02070C
020110¢
02090¢
02120C
02130C
021_0C
02150C
02160C
02170C
021110
02190
02200
02210
02220
32230
222_0
_2250
32260
32270
02280.
02290*
O23OO
32310_
22320
02330
023_0
02350
02360
02370*
02380,
02390
02_00,
02_I0.
02_20
02_30
02q_O*
02_$0
02q60
02_0
02_80.
02Qqo
02500
02510
02520
02530
025_0
02550*
02560
0257G
02580
02590*
02600
02610
02620

S011EOOTZWE CO-WW 2(O._eDT,GwA11w&C)
DZH_'HSZOW AB,")),iC(9)
PZs3. I8159265_

IIW II 111

z : z
| | I

11=.......... • .......... :I
t t • :
: = O 1

5|///////////////////////$Z
DI/01['O

DO 10 1"1,9
AB(I)'0.O

10 It(I) "0.O
DO 20 1"1,9
DO 2G J'1,25
0" (PI/2.) *3
X'2 *J* 1
I= (PI/2.) o_
GO %_0(1,._,3,;,5,6,7,_,9) ,!

1 XBE-(2./][**._* (2.,'_-8./Z*o3) *S;_(II) o,_lqH(IoG/2.1/_I,q
R (1{*G) *C03 (X/..' .) * (1 ./B-2./Be,3) oSI.N (E) ,COS. (B/G)/COSH (
2. *e/_)
ACCn(2./Zoo2*(:./X-P./I**_) oSI'_(X)) *SIGH (I*G/2,)/SIII
HIIeG) *II./E-:./S o.3) *51tlIB)/COSU(2.oE/G)
GO TO 15

2 ABB=_./_*o ]*S; _ (B) *COSH (_/G)/GOSH (2. *BIG)
ACC-e./Beo )*.SI _ (B)/GOSH (2. o8,_;)
GO TO 15

3 IBR" ( 2./I **2_ (2./Y- R./_*° 3_ *51 _ (l)) * (I • "?_,'IH (_°G/2.)
/T,tHHfloG))eCq-:H(][*('./2.I*COSfX/Z)*(1./B-2./BeoJJ*SIN(8
) *COSH (B/G) /C3_,_ (2.0_/;)
ACC= (2./I**2.( "./_-q./_oe])*Sl'! (X)} • (COSU(XeG/2.)-ST
_11(IeG/2.)/T&_iI(Xo$))* (1./B-2./BooJ) o$lM(B)/CO_HI2.*B/
G)
GO TO 1_.

&CCu (-q./Ie, 2 *16. /tee SoS_ (IJ I O (1.-TAMH (I*G/2.I /TA_H
(tOG)) *C03H (1[*G,/2.)
ABB-ACC*CO_ (][/2.)
GO TO 15

5 _CC- (6./l*, 2- _./I* • 3-S Z14(Z)) * f 1 .-_;_41t (ZeG/2.) ,rt_.'*8 (Z *
G) ) *CO._H (I*_.,'2 ._
ABB',ACCeCCS (l/- _.)
GO TO I _s

6 &BE-0.0
ACC-0.0
GO ?0 15

7 &SB.,f6,/_oo2"_./][ooSoSIII(I|)oSZqR(ZoG/2.)/SZ,qR(IOG)
• cos (_I2.)
ACC n ( 6. / Xoo ;.. :_o /X e* ,I* $_ _ (I) ) oSZNH(ZeG/2.)/SZ,qR(ZeG)
GO 1'o 15

8 &CC" f" S./%*o2* 16./It* ]*SlI _l) ; *SINtl flOG/2.)/S_lqtS || •
GI
AB11-&CC *CO S (l/._,)
GO TO 15

9 ABO-2, e_Ieo2/lSoe)e(I.-COSH(B/G)/COSR(2. *11*G))oS1[W(8)

L
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02630
026U0
02650
02660
02670
02680C
02690C
027O0¢
02710C
02720C
02730
027a0
027_1
02750C
02760C
02770C
32780C
02790C
02830C
028_0C
02850C
02890C
02900C
02910C
32920C
02930C
029_0
02950
02960
02970
02980
02990
03000
03010
03020
03030
030uO*
03050*
03060
03070*
03080
03090
03100
03110
03120
03130
031_0
03150
03160
03170
03180
03190*
03200
03210
03220
03230*
03210
03250
03260
03270*
03280*

15
20

ACC-2. e_Z**2/Be*)e(1.-1./COSE(2.*SSG))*SZN(B)
AB(Z)=&B(I)*ABE
AC(I) -AC(Z) ,Ace
RETO_
Z_D

PZND T_ COTF?IC_TS FOR EL_:IT It,
&E(I) A_D IF(I) A_E TH_ COeFFICIenTS CF POZ3TS
WHZCH SURtOUt: POINTS P _ND 0 aESF_C_IVELT.

,8,_**8*e**eeeis_88eseee*s*sIee*ae**Qeeee**e*segoQet

DZ_SZ03 AE(_),_F(_)
PI- 3.1_159265_

DT/DX=O

I1| !1 liE

/- : =
/: : =

I/* ........... * ........... :E
/: 0 : P :
/= = =
/: ...... :.
SI S $E

10

DO 10 l ,_1 ,9
_.-. (l) -O.O
_P(I)-0.0
DO 20 I=1,9
DO 20 3:,1,25
B= (PI/2.) *J
Ka2eJ'I
Z" (PI/2.) *_
GO TC(1,2, 3, q,_,6,7,8,9) ,I
_EE=(2./X'*2*(?./I-9./Kee_)*_:I(X)) o_I._H(][_G/2.)/SI,_
]t (I*G) eCOS (I/2.) *(1./B-2./B**3) *SIN(B) ,COSH (9/G)/COSB (
2.* _"G)
LFF"(2.//**2*(2./I-8./T**3)*._I_ (X))*_IqB(Z*G/2.)/S_N
H (Z'G)* (1./B-Z./B"e3) eST?I(B)/CCS_J(2.*BeG)
GO TO 16

2 &FF,,(-B./Z**2*16./lee3*SI_(Z)) *SIl(B (I*G/2.)/SZIIfl(_*G}
liEE'a?F*CO_ (Z/_..)
GO TO 16

3 iP?_" (6./1*82-_./_**3"SI_ (X)) *S IRU (ZeG/2.)/SI_E (ZeG)
IZ_-A??*COS (I/2.)
GO TO 16

IE...=O,O
AFF-O.O
GO TO 16

5 AWF=(6./_*e2-_./_e*3*S_W(I))_,(I.*TL,'IB(Z*G/2.)/T_III
(%*G)) *COSH ( r*,,;/2 .)
iEE=IfF*COS(1/2.)
GO '_0 16

6 IF_r: (*_./l* *2,16./I** 3"5Z3 (I)) * ( 1 .- T&N B (Z'G/2.)/TAI_I
R (_*G)) *Co sit {X,G/2. )
AI_EuAPYeC03 (_/_.)
GO 'ZO 16

7 AP-[..(2./Xeo2*(2./Z*8./_*e])*SZ.'I(X))*(I.°T_RB(ZeG/2.
)/Tk_H(I"G)) *C,)SH (I*G/2.)"COS (I/2.)* I1./B-2./Be*3) *SI.q
(_) *COSll (6*G)/COS.q (2.'8"G)
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O3290
03300*
03310*
03320
03330
033_0
0335O
03360
03370
03380
03390
03_00
03410
03_2OC
)3_30C
03Q_0C
_3_50C
03_60C
33_70¢
03_80
_3_90
_3_91
03500C
03510C
03520C
03530C
03570C
03580C
035o0C
03600C
036a0¢
03650C
03660C
03670C
03680C
03690C
03700
03710
03720
0373O
037_0
03750
03760
03770
03780
03790
03800
03810
03820*
03830
038_0.
03850
03860*
03870
03880*
03890
03900
03910*
03520
0353O
03_0.

9

16
20

AFF= (2./Z'e2* (2./X- 8./Z0"31 eS2 _ (Z)) * (1. -?1_3 (ZeG/2.
)/_'&NU(ZeG) ) .COSB(Z"G/2.), (1./8-2./8*03) *S_N (8)/COSH (
2,eBeG)
GO TO 16

AF_',,_./Sws 3*S I.q (B)/COSH (2.1,8*G)
JL?-E'IF?*CO SFI (BAG)
GO TO 16

JkE_st2. *DT**2/S**3*SIW (e) * (1.-C058 (B/G)/COS8 (2.$_/G))
AFFu2. *£Tew2/_*e 3eSZN (_) • (1.-1,/CO$fl (;.eBeG))

le(I) -A_(I) +x_
AP (I) sA? (I) *AFT

8 ET [;R.q
END
$e$ me, e$oeeoee oeeeeemoosee$eomeeo,eee ee$ oeee $e eeeeeeoe

?I_(0 ?B3 COEFTZCI._,'iTS 1'OR _L_MZ._T tG_i!
_D(Z) ,_G(Z) ,?._(Z) !.:;0 _I (I) A3Z THg CC_?FrCIE,'ITS
O? POinTS W_Z'--8 SO,qROU:IB _OZNTS _,Q1,G2 A._O Q3
RZ 5?ECTI¥-'-LT.

$$8 d'oO.e_mS* IO 0. oe_m ee$$$0_ ee4 $$ $ _ _ee_e es* **_$***_$$$ e$_

SUBROOTIH5 COS_ _(DX,_T,S,_,AG,AH,_I)

DIRIRSIO.q AD()) #_G(g),&H(9) ,Az(g)
PZ= 3.1_159265_6

DTIDXsO

wg li lie

/: : :
/: : :

g/e ........... • ........... :E
/: Q2 : e :
/: Q3 : Q1 :

S_///I/////I/IS/IIIIII/ilIS'-
DT/DT-O

DO 10 Ial,9
AD(I) "0.O
_G (I)'0.0
AH (I)"0.O

10 AI (:) uO.0
_O 20 I-1,g
DO 20 J_I,25

8"(PI/2.) *J
K,,2ej- 1
1[- (PI/2.) *K
GO T0(1,2,3,_,5,6,_,_,9) ,I

1 IDD-(2,/X**2_ (2 ./_-_./X*"3_, *S: ._ IX) ) * ICCSB (ZOG/2.)/CO
SH (I,,G) *.COSH (_I (2. "';)I ICOS.".lII_) ),cO_ {X/2.)
AGG-(2./IO"2*(2./I-8./T',)) e_I';(1)) o(CCSH(_*G/2,)/CO

SH (Zer,) *Cos (:_/2.)/C_SH (x/_))
AMII,,(2./Z",J2*(2./I-'_./X*'_-) ,SI'L(I)) _'(CCS(I/2,)/COS_(
IeG) *CQS_ (:(1 (2. *.;) I/C3S_ (ZIG))
iII'(2./I*'2*(2./I'_./I°*J) "SI.%(I)) *(I./COSU(IOG)*I.
/CO s_ (z/c) 1
GO TO 17

2 &DO_('g,/_e2*16,/Iee]oSIN(_)IeCOSH(I/(2, eG))/COS
8 (Z/G)*C_S (I/2.)

EGG"('8./Iee2*16./Iee]eSI.q (1)) eCCS(It2,I/COSN(I/G)
IBSw (-8./][*'2" 16./I** 3*SIN (%)) *COSH I_[t 12. *G) )/COS
U I Z/G)



039S0
03960
0]970 3
03980
0]990
0_000
0_010
0_020 4
0_030
0_0_0
0_050
0_060
0_070 5
0_080
0_090
0_00
0q110
0_120 6
0_130
041_0
0_150
0_160
04170 7
04180
0_190
04200
0_210
04220 8
0_230
042_0
04250
0_260
0q270 g
04280*
0_270
01300
04310
04320*
08330 17
043_0
04350
0q360 20
O_3TO
0q380

• tL_

AZZ- (-8. IX**2 * 16./I[ ** 3.S I._ (Z))/COS S (X/G)
GO 20 17
AZZ= (6./X*'2-_./X**3*SLq (I))/COSB {X/G)
&UU- &11.CO3:t ( Z/{2. *G) )
&GG= AII*COS (I/2.)
ADD" &HH*COS (X/2. }
GO TO 17
AOD-O. 0
&GG'O. 0
&HN"O. 0
&II=O.O
GO TO 17
ADD'-O. 0
&GG*0.0
&BH,,O.O
JkZI'0.0
GO TO 17
&DD-O.O

AGG=O. 0
AHB=O.O
aIl=O. 0
GO TO 17
111= (6./I** 2-P./x*e3tSI. q (Z))/COSfl (XeG)
&GG= &TI*CO_H (_*_/2,)
&ffH=III*CO3(XI2.}

&DD=AGG*,_OS (X/2.)
GO TO 17
&_I= (-8./X*'2" 16./X** 3*S]:.q (X))/COSH (l'G)
AGG=&II*COSR(%'G/2.)
AHB-AZI*COS (X/2.)
ADD'&GG*COS (1/2.)
GO _O 17
ADL"8. *DI*e2/_e*3"SIN (%) * (1.-COSX(Z/(; .*G) )/COSH

(z/G)) *cos (X/2.)
AII=8.ecI,*'2/" °" 3*_Z,_(l) *(1.-I.ICOSN(I/G))
&GG-A II'_,OS (X/2.)
AHL].=B.*DZ**2/Z*']*SIN (Z)e(1.-COSE(Z/(;.*G))/COS8

(x/u))
AD (_)mAD(I) *qZD
|G (_) 1,_G (I) *'- CG
ilq (I),.AH(Z) *A_H

R_TUll .q
ZltD

122

...... Jmm_



ORIC:?L"L P_,CC ;?.
OF POOR -"" _"_uA..,TY

123

THE

00100C
001100
00120C
00130C
O01qOC
00150
00160.
00170
00180*
00190
00200C
0021CC
00220C
00230C
O02UOC
00250C
00260C
00270C
00280C
00290
00300
00310
0032O 997
00330*
003_0.
00350.
00360 g58
00370
00380
00390
_OqO0
30q10
00_20
00q30
00440C
00_50C
00_60C
00_70C
O0_80C
O0_90C
00500
00510 101
00520 105
00530
005_0
00550 70_
00560
00570
00580
00590
00600
00610
00620
00630
006q0
00650C
00660C
00670C
00680C
00690C
00700

APPENDIX B

FA SOLUTION FOR LAPLACE EQUATION
WITH COMPLEX GEOMETRY

FINITE A,_ALT'rIc SOLUTION OF T_Z LA?tICZ
FOB COMPLEX G'.O.".-'.T_Y OF BEAT X_A._SFE5 ON BEAT
POTY_TI_L FLOW _XrB 5T_P OR CC'tTRUC'r_ON.
qm* IP* eOI 0_ Q 8 _,qmQ 4DiP qeB 8sq_ s_sq_e e*_ es_ Q _B Q Q Q Q a o_ 00_

PBOGBA.q FTC(I!;P_T,OOTPDT,OOHEAT,TAPZS=$NPOT
• TA."Z6=OUTP DT,TA PES=OUI:ZAT)

DI_.ZNSION FIOLD(25),FIN...;_(25) ,F/OLDP(_5) ,FI_ZgP(25
) , T_ (25) ,TB (25) ,T= (25) ,TD (25) ,RCLD (25) ,HOLDP (25)
IT_B=O

I._PgT DATES

Z1,TI,X2,T2,X3 AND Y3 ARE DI_Z::SIOR$ 0P THE PROBLEFl.
N IS TFlZ NUBEER OF POI._T$ A';_ THIS ROMBZN HAS TO BZ

ODD N0_SER. TT_A/ IS TRZ R_X/_UR N_E_EN OF ITERATION
• IK IS THE t:urPER OF FODRIZR'$ SERI_.$ TZARS AND
IK SUOOLD BE _3RE THAN 100.
EPS IS A CO._fTR_L FOR CO._TZR GE_;CT.

,moeoeee_ em_e eee,_ mem8 em:_ eee,e meeee ee o_o_eo_eeooe,

NZA£eII,Y I,ZI,TI,I 3,T3,R,ITMAZ, IK,EP- _
PRINT 998
PRI.qT 997,XI, T I,_2,T2, I3, TR, :!,ITfl_X_ IK,ZP$
FOB.'5|T(//3X,eXI=eeF_.2e3XeeTI=',F_.2/3Z,
*Z2=e, F_. 2,3Z," YI==, F_. 2/3]t, ".'(3=', Fll. ;, 3I,='13= '=
,?_.2/31,*._ = *,IR,RX,*ITFlAI''eZ3/JI,=I_ =*,I/_,
3X, *ZPS'", rlO. 6//I
FOF.'SAT(///3X,"I:;PgT DATAS ARE I'OLLOIJG *//)
NEI,'N-1
FLOATN =,q- 1
DT-12/FLOATN
ZP IsZ1-DY
IP2=X2-I_!
DO 101 1=I,.'/
FLOATI'I-I
0,_ _e4_ eemo,,_,,_me eo _*emeoe_eo_mmem 4ee _ e ee_ee_e

FIRST GUESS SI+C3LD BE RXD-'. TO STkP._ 1R_
I_¢RA_lOH. PTOLD(I) ,?IOLDP(1) ARE THE
TEFlPRATUP- O_ T_"- LI:IZ E_Tu£_ THE ¥_RT I

e2 AND PART 2,3 EZSP-'-C_IVZLT.
_eQeo*aeoe_ Im em_ • 0 _ee eeomu o eoee_o_o_oe_oee_e

FIOLD (I) -1./T2eFL3qTIeD!
FICLgP(I)a'F_OLD(=)
ITER=IT_9 * I
DO 70q I=2,._RI
BOLD (I) =FTOLD (I)
ROLgP (I) "IIOL:P (I)
TA (1) "C.0
TB I1)tO.O
TC (1) "0.0
TD (1)'0.0
TD (_) " 1 . 0
TC (.'() '01.0
DO 10_ 1-2,_;_1
FLCATI" 1- I
TItFLOA_: *DT
OOteOtO OO • eoe oo • • t Ileeeoeoeo8 to ooloeee toetloee

THE A;;ALTTI: S_L'JTIO'I FO.q PklrT 2 Aq_ TH.e.q
?I._D TI_E T:_?_'.:_£ _T C_T_Z._ PO/,'l_. _ (X=DY_
T"DT, 2DT, ..... ( _" ')DT) .

ee_eeeeee_eello**lmemeeeeeeeeeeeeeeeeeeeeeeeee

CALL T_B(5,5,IK,ST,/f,TI_,DT,FIOLD,FICICP,12,TI,T_|



00710*
0072O¢
00730C
007160¢
00750¢
00760
00770.
00780
00790 1018
00800
00810
00020
008)0C
OOOqOC
00850C
00860¢
00870C
00880
00890*
OOgOOC
00910¢
00920C
00930C
oogqoc
00950
00960*
00970
00980 1C2
00985
01000C
01010¢
01020C
01030C
010QO
01050*
01060
01070*
01080
01090 103
01100
01110 705
01120*
01130
011_0 706
01150 200
01160
01170 201
01180*
01190
0120O
01210 203
01220*
01230
012q0 202
01250C
01260¢
01270C
01280C
01290C
01300C
01310C

..#t . "

_F PO0_ QU/.%LITY

eDELZ, CELT)
ii4iilieseimillllliliBiteliui i i it eli oi **ii8¢ ii

PZND THZ TE"-?RAT_JR t- AT C.-'RTAI.H POINlS IN
PART 2 , (Iz_2-Dt',T=DT,2_T, ...... (_I-1)DT).

_0 *O**altq_gQ* i* OiqBI8 **iSqp eqsqJ eOi48 eeeoi4*oloi4*e*

CALL TTB(5,5,IK,_T,.q,YZRXP2,?IOLDwFIOLDP,Z_,Y2,TCC
,CZLZ,DELY)

TD (Z) ,,T88
TC (I) -TCC
DO 102 I,,2,N
FLCATI-I-1
TIsFLOATZ eDT

TRE &HALETIC SOLUTZO.N FOR PART I AS_ ?I-qD

THE TE.w,PPATURE A!' CERTAIN POZgTS (X=II-DY,
Y"OY, 2DT, ..... ('1- 1) DT) .

tl6 eli, o ,o o_aim*o o 040 e e o 800 eQO 9eann 8 all ialJsll 844 Q 4048040 •

CALL TTA(S,5,;K,DY,NwTI,XPI,FICLD,X1,I1,¥2,TEA
,,DELZ,, CELT)
.$e$0 *al)oqmosooo**e*mem_m_eemeem* 4e eo eQe oeeeeeee

TU_ ANALTTIC SOLU'IO._ FOR PART ) A._D FI:;D
THE TE-_PRATURE AT CERTAZH POINTS (ZsCTeTnDT,

2_T, ..... , (._- 1) DT) .
me e,eeoome •mom_moeom_mm_eomQm_ee eelee _eoeeee*

CALL TT_ (5,5, Z_, _Y, N,TL, D_, YIOLr, P,X ],E 3, _2,TDD
,DELL,DALE)
TA (1)-TAA

TD (I) aTDD
DO 103 I:2,.qR1

USI3G TU _- ._;qZ-PO_._T FI_TZ _IFP._R_.NIIAL FORSOLA

TO CONTI._UE THK I:ZPATTC._.
Q_I q_qp_ll qll**_* e _ e ee 8 o • q_ • • • q_ • _o e _ • e* e_ eQ • e _ e8 e*_e* *_ e_e

PIN_W (I) -(T_, (I.1) • TA (_-1) _T3 (,'-1) *."_ (! •1) ) *. O_;b_Se_
13*(TA(I) •?_OLD(:•I)•T._(I)*FICLD(Z-_))eO.2C35)l:*59
PZN_;P (I) - (_- (:.I) •TC (I-1) *_'D ([• 1) *",C (I-1)) *O.Oq_,6R$u
13t(TC(I) *F_OLD,([*l)*TC(I)*r£OL_;9(1_-l))'_O.20351_59
rIOLO (Z) :7I'_ -- _i (I)
PICLDP (I) - P_:I-_P (I)
GO ?C5 I_2,,:;_I
Ir (ABS(HOLC(I)'FIOLO(I)) .LT. EPS.&!ID.ABS(ROL_P(I)

• ."IOLOP(I)) .LT.-_?S) GO TO 706
IF(IT!R. LT._T.'.AX) GO TO 105
PRINT 20_),IT:3
FORRAT (iX • • ZT "R-w, I_///)
PR Z.qT 201
POg_&T()Z,_TllE 01._T_Z_UT!o.q 0ie TH _. '_Z.'SPPATt].q. _'•,
• O:1 TH_ LI,_I"e/3_,'BETWr.Z_ PART 1 AN£ PERT 2 IS•/)
PRI._T 202, (FIOLD(Z) ,_-I,,;)
PE ItiT 203

FOSRAT(]X,eTNZ DISTR_O'IO._ OF THE '_3RPRATgPE •
,•0:! TH _- LI:f"e/]X,"BZTbEZq PA_T 2 &NI 3 IS•//)
PR_T 202, (Y:OL_.?(:),,_s1,,tl)
POR.'.AT (3X, 11 (? 10.6)//1
0% ••l_Ole lilt • I Ill ¢044101_ ell l• ll•lelllllllllllQl

Tile CALC_L_TEO:I IS DO:;'. _OV TCO g_[L e.-, ASKED
A_COT TO_.q DISZ._A_LE PO_!IT._ TROT TOC g_SU TO
HAVZ ITe S TEMPPAT_3.. K.qD NZk_ CGNC_CTION _.q
% ANU ! DIRZCTIO:_.

IX A,qD If ARE TVO NON_EIeI/' YOg liq: DT/DZ AND
GT/DI _ JgST PUT I%,JlellsleOTN:'RllIS_. POT SORE

124

'!
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01350
01360
01370
01374
01380
01390*
014OO
01410
01411
01415
01416
01420
01430
014_0
01450*
01460
01470
01480
01490.
01S00
01510*
01520
01530
01Sq0,
01550
01S60
01570c
01580C
01590C
01600C
01610C
01520C
01630C
01640C
01650C
01660C
01670C
01680C
_1690C
01700¢
01720
01730*
017;0
01750
01750
01770
01780
017g0
01800
0,810
0182O
018)0
01840
0185O
01860
01870
01080
o189o

PEZHT 350,Z,T
X123111_X2÷Z3
K12-Zl*X2
ZT(Z._g. Z1) GO TO 359
Z?(X.LT.Z1) C_LL _TL(ZXpZT,ZK,DT,_,T,I,PZOLDeZl,T1
tT2wTwD_LX,D_LY)
IP(Z. GToZ1. A;C.X.LT. X12) GO TO 345
Z?(Z.GToX12.;';D.Z.LT.I123) GO TO 346
ZF(Z. ZQ. X123) GO ?O 3;6
Zr(Z._Q.X12) GO TO 3_5

369 C&LL TT&(II,IT, ZK,C¢,_,T,ZtFZOL_,I1,Y1,T2,ToDELXeDtLT)
GO TO 3_7

345 /'Z-X1
C_LL T_B(IIsZTeIK,DI_eTeI_FIO_D,FICI_P,I2_T2_T,
DELI,D[LT)
GO TO 3_7

3_6 Z-Z-Z12
C&LL T_O (II,I T,_ K,D_,N,_ X,PIOLDP_ Z3 ,T3 ,_2 ,T,D_LZ
,D_LT)

3S0 FOR_AT(3Z,_T_H TERPRAT_RZ AND H_T CC3. ATe,
* PCI_T X=*,F_.2,* A_D Ys*,FS.2,_ AR!')

347 PRINT 3q�,T,DEL_,D_LT
3_9 FO�RAT(//JX,*7=_,FIO.6,3K,eDT/DX_*,FIC.6

,3x,eDT/DT'e,_IO.6)
GO TO 3_8
END
.eooommeo_m*mmemmoomo*moo_eOoeo*oeo*o*8OmOom*Oo

&W&LYTIC SOL_T_O_ FOR PART 1.
.oeeoo_o_o_ee_oo_eoooo_oe_eeoee_sooeoeeoeooo,o*o

Z I
I I
Z Z
I PlgT 1 • *
I • q'

0

r(Y)

10

SU _BOUTI.q _ TT.A (IX# IT, 11_,DT, .q,T, l, l_eZ 1, T I, T2,T_&
,DZLK,D_L¥)
DIflENSIOH C(25) ,?(25) ,CB(25),CD(25)
TAI-0.0
DTLZ_O.0
D_.LT-Q.0

NP1"N* 1
DO 10 Z,.1,HP1
CB (I)-O. 0
CO (I) -0.0
C(I)=O.O
PIa3,l_159265_
DO 11 J,,1,:lPl
DO I1 _1,Z_

XLI_ (PI/! 1) eK
17(._._.1) GO To 2
][!, (J.l_._) (;o 1"o ]
IP(J.EO._P1} GO 1'0



3F pOOR QU!iLfi"f
126

01900
01910
01920
01930
019_0
01950
01960
01970
01980
01990
02000
02010
02020
02030
020qO
02050
02060
02070
02080
02090
02100
02110
02120
02130
021q0
02150
02160
02170
02180
02190
02200
02210
02220
02230
0221O
02250
02260
02270
022B0
02290
023OO
02310
02320
02330
023_0
02350
02360
02370
02380
02390
02_00.
_2q10.
32q20"
02_30.
02_0
02150
02160
02q70.
02180*
02190+
02500*

JJ"J/2* 2"J
ZP(JJ.EO.O) +0 TO 5
& lmFONk 1 (£Y.Z ',.1)
81"FO';B 1 (OTegL1)
A3"rOMA.3 (I:YeZ tl)
B3"P0gB3(DToZL1)
DlaAloCOS((J'I)'XLI"DT) •BleSt_((J-1) IILIIDT)
D3"& 3cOOS ( (J- 3) •XLlO�T) *B3OSZ _ ((J-3) elLIIOY)
01 3=01 • 0)
_C"PO'(C_- (K,Y1 ,XL1, Xl ,D1 3,ZwT)
Z? (lrI. GT. 1) CE_,O. 3
zIP (ZY.GT.1) CC:C)-C.¢
ZP (IX. !Q. 1) C."9- PJ ";CW.3[(_, Y 1, Z:. 1, X 1, : 13,1C, T)
TI'(IY.!Q.1) CDD-PON.'_!(_,l'l,ZLI,Xl,C13,3r,I)
GO TO 1

JkI.,POH&I (DY, ILl)
D1-A1

CC"?o_qCC(K,Y1 ,_L1,XI,DI,Z,Y)
IP(II.GT, 1) CE_:.O.,3
ZP(IY.GT. 1) COD-O.
II' (IX..rQ, 1) C_a-_IC_Z(._,TI,ZLI,XI,_I,X,T)
IP (IY.EQ. I) CbD:PUH_ET (K,Y1, ZLI,X1,CI ,Z, _)
GO TO 1

3 li. 3"?OHI ] (DT. _L1)
83"FO.q83 (:T ,Z L I)

D3"A3*COS( (J-_J "_Ll"DT)*B3•St.H((J-3)*I_laDT)
CC-FO_CC (_, ¥I, TL 1, _ 1, ;, 3,Z, T)
IF (IX.GT. I) C_",-Oo _
IF (ZT.GT. 1) C_5:0. _'
IF(IX.Z•.1) _8_-FU_ZI(K,T1,XLI,Zl,D3,Z,T)
Ir (IT. EQ, 1) C_" F_C:T (K, T I, IL I,I I, C3, Z,T)
GO TO 1
CACaXLI* (_*11)
IP (CAC.G7, _30) C3C-630
I_Z 1- £][P (-C AC)
CAP"2.IXL1 e I1
IF (CIP. GT. 63)) CA?-630

Z_ 2"" XP (-C_ P)
ZL P1"_Pl/l I•K
C&'XL 1*1[
DAC'ILI• (! 1-][)
_7 (DAD.GT. 6 )_,) DAD "630
C&&x2. *][LPlet r I
CA 8..XLP 1 • (Till)
C&C_ILPI* (Y 1- lr)
ir (CII.GT. 63_) :_k-630
IF (CkB. GT. b32) C:,D-630
IF (CAD.GT.6]_) C._Ds630
IF (CA.GT. qSO) C._a SO
CC'2./!1•(" 1./][LI•:OS(P:,•nZ)•I./'(I.leCC$ (XLleT2I) •SIN(
XLI•T)• (_.][_ (-_XD)-'_ I)/( 1. -:'_,._) e2,•C3. _ (_•o[) /
(K)P_•TJ,_H(XLI•TI)) *_Iq(XLI•T) * (_;2_:I(C k) *.'_'+H(_LIOII

)•CCSH(C_)) *_J.•(_Z;(P:/2.'_r))'*:/(._*i_t)" (_IP(-CAD)
-PiP (-CAB)) /().-_X _ (-CAA)) *5I:;(ILPI*X)
Zl'([X._T. 1) C+"a-0.O

zr(Iz.!Q. 1) C_-2./YIe(*C_SI_*_!)*COSIILI•Y2))•
SIN (3[LIo lr) • (_ v? (*_o) ,Ez 1) /( 1. -_-z 2) 6;.. oco3 (t'opl) /
(KePIO'_A_iH(ILI"*(1)) •SZq (_LleY) * (CC_H ICA) ".*,_*_H (XLI

• Xl)OStqH(C_))*_'1*_.*(._t+_(?I/2.°')l **;/(K'."I) •
([IP(-CAD)'CZP (-CAO))/(I.'"XPI*C&1))*CCS (_tLPleZ) *



_jPll_ " _ r

OF POOR _U;._LITY

127

I
02510*
02S20
02530*
02S40.
025S0.
02560*
025?0*
02580
02590
02600
02610
02620
02630
02640
026S0
02660
02670
02680
026g0
02?00
02710
02720
02730
02?40
02750
02760
02770
02780
02?90
O2800
0281O
02820
02830C
@2840C
02850C
02860C
02870C
02880C
02890C
02900C
02910C
02920C
02930C
02940C
02950C
02960¢
02970C
329_0C
329g0C
33000C
330 10
03020*
021030
03040*
03050
03060
03070
03080
030go
03100
03110

11

74

][LP1
Zr(Z!.EQ.1) CDDe2./Tle(-CO':(KepI)*CCSIXLIOY2))*
COS(XLleY) "(£ZP(-[_[:)-V.Zl)/(1.o_Z2) *;,*COS(KeP[)
/(KePZ,PTA_IH(ZLI*X1)) eCCS(£1,1Qy) *XI, le($ZIlH(CA)-
TEtiII (][LIoZ 1) •_O_H (C;_)) *_, • (SZ'; (PZ/2.oK)) **2/(KOPZ)
• (,wXP (-CkO) *_.XP (-=AB)) / ( 1. -EZ P (-CAA)) * ILP1
•SZN(XL_I*X)
GO TO I

A21' rU.'IA 2 (DY,_LI)
B2,, rgN_2 (DY ,,ZL 1)
D2,,k2*C0 $ ((J-l) "_[LleDT) _B2•$ZN ((J-2)*IZl*DT)

CCuFUHCC (]_,Y 1, X_ I, Z 1, D2,][, T)
ZP (ZI.G't. 1) C:3B _0.0
IP(II.GT. 1) C=_-O.O
I? |II._.1) -'_B-F_'I-'_.I(KpII,ILI,II,_2,I,I)

IF(ZT._Q. 1) C£='Fg!;CZT (KeI'leILI,XleD_,Z,T)
C (J) "C (J) .C:
CB (J) .'C B (J) *CEB
CD (J) -CO (4) *C_D
CO NTIS(1 _.
l_O "7tl Ill ,_
£;ET-CB (2) *P(I)
01)_-C0 (I) "7(11
_ELI'DZLI * C ::.':'
D_LY'D_LY*DDT

TTsC (1) *.P (l)
TA&uT_A*TT
TAAnTAA*C (_PI)

CELlrsD_LI ted (,':P 1)
E -.TOB_

ANALITIC SOLUTI0_ _'OR PART 2.
• 4) eee•4st_ e_teoeee_ee_u,o@_oe* eo eetl _i 4Oeo_•*@

?',1

11 IT) • * * • P2(I[)

PERT 2

SOBilOI]'_I_ TTB (II,IT,IK,DT,._.Y,X,FD.FF,Z2.T2,T
e DI_LZ, £._LT)
DI_£'tSIO,_ C (25) ,P(25) .?D(25) ,F? (25) .C| (25) ,C_(2S)
,CB (25),C3 (2S)
lip l-N* 1
T-0.0

_ELI-O .0
C_.LT-O.O
PI "3. 111159265_
DO 10 Z_I,_PI
P(I)'0.0
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03120
03130
03140
03150
03160
03170
03100
03190
03200
03210
03220
0323O
03240
03250
Q3260
03270
03280
03290
03300
0331O
03320
03330
033_0
03350
03360
03370
03380
03390
03400
03410
03_20
03430
03Q40
_3450
03460
03470
03480
03490
03500
03510
03520
03530
03540
03550
03560
035?0
03580
03590
03600
03610
03620
03630
03640
03650
03660
03670
03680
03690
03700
03710
03720

10

2

C._ (I) "0.0
CD (Z) "O .0
CK (Z) "0.0
CG [I) "0 • 0
C (I)'O.O
DO 1 J-I#NP1
I10 1 Kal,Z_
_2" (PZ/T2) -,K
;r(J. ZQ.1) GO T0*2
II"[J.EO.ll) GO TO 3
ZF(J.I_.NP1) GO TO 4
JJ_J/2"2"J

IF (JJ. _(_. O) GO ?0 5
a 1 'lPO.q;A1 (DY,XL.) )
BI,_FUNE1 (I_Y,X L2)
lk3't_'13.q'A3 (D ¥, X L2)
83,,FONE3 (_Y,XL2)
01"& leCOS ( {J- 11 "XL2*DY) .61"SI,_ ( (J- 11 *IL2*DY)
D3't_3*COS ( {.3" 3) *XL2eUI) .834'3Z, ( (J" 3) eXL2eDY)
013"01'*03
CCsYgH_D (_,TZ,XL2, X2,O13, ZeY)
PP*F_I.NCC[K,T2,XL2, X2,DI3*Z,Y)
IF (I%.IQ.I) CC::F3::DZXIK,¥2,XL2,X2,_I2,I,Y)
17 [IT.Z_. I) ??9_?:':97. T|K,T2,X'_2,X2,',I3,X,_)
IF 1I%. _9. I) CC:C_F_C_-X [_, T2, XL2,_ 2, : 13, X,T)
IF (I_.EO. 1) ???P=.PU.'tCE'_(_,Y2,XI.2,12,_.'I3,][,_)
IF (I;. GT. I) CCC:O. 0
II'(II.GT.I) C_C:-O.O

IP(IT. GT. I) P_'O.O
IP (II.GT. 1) PPPP,_& .0
GO TO 6

I? (IX. ;_. I)
Z_ (II.;O. I)
I1' [IX, _":,.I)
Z_ (IT.ZQ. I)
I_' (IX. GT. 1)
IF (IT.GT. I)
I? (II. G?. I)
IF (IT. (;I.I)
GO TO 6

DltrUHA1 [DT,XL2)

PPaPONCC (X,Y2, IL2, X2,D I ,X,¥)
CC_=?_:_IX [K,/2,_L2,I2,CI,X,T)
D,_"FU::D ET (._,T2 ,'iL2,.%2,_ 1 ,I,T)

P."P?-FU._CE ! (_,12, LLI,12. CI ,Z,T)
CCC"0.O
P PP'_O • O

P�PF_0.0

k 3"F_A 3 (DY, IL2)
B3nFUHE3 (CT,_L2)
D3"K_*CO$ ( (J- 1) *XL2tDII ',830SI'! ((,_-3) eZI,2eDT)
CCtY_INCD (K,I 2, XL?,_ 2, = 3, :[,_)
PP_FgHC: (K,T2, _L2,'2,_ 3, I,'_)

II_(IX.!_, 1) CCC=rU!;_E_(I',¥2,_L2,Z2,_,X,T)

IF[II*_. I) CCCC_?"_.:CZX(_,T2, XL:,L2,:_.,I,T)
1¥ (IT*E_.I) P?P?_'_:_CZ 1 {_, _2, XL2, X2 ,_3 ,I,I)
IF (IT. GT. I) CCC'0. _

IF(IX.G?. 11 CCCCtO,O

GO TO 6
ILP2aPI/K2eK
CAI_2.eILP2*T2
C&BtILP2e(T*Y2)
C&CsXLF2e(I2*T)
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03?30
03740
03?50
03760
03770÷
03780
03790
03800*
03810
0382O
03830
03840
03850*
03860
03870
03880
03890
03900
03910
03920
03930
339_0
)3950
)3960
03970
33980
33990
34000
04010
_4020
04030
340_0
9qOSO
34060
_a070
04080
0_090
04092
0409_
04100
0411O
0m120
0_130
04140
0_150
0_160
0_170C
O_ 18OC
0_190C
0_200
0_210,
0_220
04230
oq2qo
04250
oa26o
o_2?o
04280
04290
0_300
04310

Zr (C&&.GT. 630) Cllt ,6_0
ZF (CAB. GT. 630) CIB=630
Zr (C&D.GT. 63C) CAD-'630
¢C,'Q. * (SZ._ (_:* :'Z/2. ) ) #* 2/(N*PZ) .SZll (xlr, P2e Z) Q
(-'.ze (-czD) - r..z z"(-c_,3)) / (1 ,-zxP (-CAJq)

PP,,O. 0
ZF(Z][.ZQ.1) CCCut_.e(SZN(PZ/2.,,K))ee2/IKZPZ)*XLP2
• COS (ZLP2"X) * (_XP(-CAC| -_XP (-CAB))/( 1.-[XP (-CAA))
ZP (ZX.G¢. 1) CCC,,O. 0
CCCC..O. 0
PPPP"O .0
_F(_Y. EO. 1) pp_,t_.•(S_..'!(pT/2, eE))ee21(KepZ) *XLP2
'_(EIP (-C,_ D) _'--'.XP (--'&B)) / (1 .-_.I F (-CSA)) *S_li (ZLP2OZ)
Z?(ZY. GT.1) P_Pa, O.C
GO '_0 6

.5 t2870_i k2 (I_T,XL2)
B2-?O_B2(Dt,IL2)
02-A2*COS ((3-2) *XL2, CT) *B2.$1'I ((3-2) *IL2eOY)
CC_fOgDD ( K,T2 w_L2, X2 _02 .;(eT)
P_,,,POIICC (Y,, T2, ILL2, X 2, C2, _, T)
Z?(ZX.EO. 1) CCC=FU':D_-X (K, Y2 _ ZL2 ,X2 ,C2, Z,T)
TF (IT. &O. 1) P?P= FU'_0 £Y (_, Y 2, XL2, X2, C;, Z,, _)
IF(ZZ.EO. 1) CCC-" =F_;cE X (_, Y_-, XL2 ,'_2, C2 , Z, Y)
ZF (ZT. ZO. 1) P PPP" PU';C_T (X, Y 2, ZL2,Z 2,_,;, X# T)
Z? (IX.GT.1) CCC=0.,_
'rF(ZT. GT. 1) PPP=O.C
Z?(ZZ.GIol) CCCC=O.O
ZP (IT. GT. 1) PP_'P:,,O.O

6 p (J) =P (.I) *P?
CB (3)"CE (J) *CCC
CO (O) ,,CO (J) *CCC:
CH (O),,¢n (J) ,pop
CG (J) sCG [J) .PPPP

1 C (J) -C (J) +CC
DO 7 J.1,N
CB£T'CB (J)*?5 (J) "C_ (J) *FP (3)
CaGT-CH (J) ,,FD (J) ,co, (J) ,FP (J)
I_I[LZ- O.rLX *C'2C?
DEI,_ sDF.L¥ +C._G'I
TT=C (J) "re (J) ,t.p (J) *I'P (J)

7 T=_+T2

T'JT*C (._ Pl )
DELX=DI_LX _CB (.qP 1)
DEL¥= D_LI' *C_f (_qPI)
REBORN
ZND

_X&LITIC SOLUTIO.'; FO._ P._RT 3.

_OB_OOTI_ TTC (ZI, Z_[,Z_.,DT,g, Z, 1, ?, 1_ ,YJ,T_,T

, DELX,DEL_t)
I)I_Z_SIO,q C(;5),f(25),CB(25),Cb(25)
VP l=.q* 1
?,,0.0
;_ELIsO.O
OELT-O.O
PZ-3. 14159265U
CO 10 1-1,NP1
Ca (I) "0.0
C;) (I)-O.O

10 C (I) -0.0
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011320
01330
013110
01350
011360
01370
01380
01390
011100
01110
01120
01130
011110
011150
3m160
01110
om18o
01190
01500
o151o
01520
011530
0115110
01550
01560
015'70
01500
01590
011600
01610
G_620
01630
011610
016S0
01660
01670
01680
01690
Oq?O0
01710
01720
01730
01710
01750
01760
61770
01780
01790
01|800
01810
01820
01830
01810
018S0
01860
01870_
01880*
018901
01900,
01910,
01920

00 11 J'14, NP1
DO 11 K'lwIK
XL3" (pt/_r 3) *K
IYIJ.ZQ.1) GO ':O 2
IF(J. IG.N) GO TO 3
XP(J.EQ,,'IPI) GO TO 1
JJoJ/2* 2"J
XP(JJ.EO.O) GO TO S
AlmFONI1 (DT ,X 1.3)

BI"FU_B I (O lr i, xL 3)
U3 ulPON t,3 (DT,XL'3)
B3ePOIIB 3 (O I,,XL 3)
Dlukle¢OS ( (d- I) eXL3eDT) *BleSXH ( (,,I- I'1 *IL3eDT)
D3-I3*COS((Jo_)eI[,3*DT)*D3*SX._((,J-3)eIL3*DT)
D13-01*03
CCuPUNDD(KwT3,ZL3,I3.D13,IeT)
ZF(II.GT. 1) CZ_-0.0

IIP(II.GT, I) ¢0D-0.0
ZIP(II, I(_, 1) CBI_-I_J_DEI(K+T3, IL3,I3._13,I,T)
Z7(I'l._O.1) ¢DD,mPO,'tDE_tK.'f3wXL3+X3,1:13.X_T)
GO TO I
I)I -FO.',I _ I (OT,Zt3)
CC,.FONrD (_, T3, ZI,3, I3, O lwl, Y)
IIP(II.GT. 1) CB8-0._
IP(IT. GT. I) CCC,,0. O
II'(II._.1) C_B,PU_I)_I(_,T3,11.3.,13,_I.,I,I|

IF'(IT. IQ. I) C:9-r_;ID[T(_wI31, IL3_I_CI,,I,I)
GO TO 1
]_3 "YO.q J_3 (_T,I L3)
D3'.'FO._ B3 (I_ T .X t 3)
93-&3*COS ( (d- ]) etl. 3*01) *83eSIq ( (3- _) *IL3eOT)
CCtFUNI}D (K,T3, IL3, X3,_'3,X,T)
ZP (II. GI. I) C_B:,O. _
IF (IT.GT. I) C_D-0. G
ZP (liar. !_l. 1) C 8.q-r0 ';D."I(_, Y 3, II.3, I 3, _2, Z, T)
ZF(IT,-vO,1) CDD"PU':DET(K+T3,XL],I3,CJ,I,I)
GO TO 1
C]_C-It. 3* (1+13)
ZF (CAC. G?.630) CAC'-630
CkPuXL]*X 3*2.0
ZP (CAP. GT. 630) CAP'630
IZ IaEIP (-CI:)
I?_2- II _ (-C 1I')
II..P3"? I/I 3"K

0_ L'IL_* (I _-I)
IP (D4D .GT. 630) DAD -630
C_ O-ILt}3 • (I ]-T)
CI BuXLP 3" (T ]* _r)
Ck&'2, *XLI_3eY )
IP (CID ,G'_, 63_,) CAD "630
ZP (CAlt,GT,63_) C._'530
IP(CIA,GT,63u) _._A"630
CA-IL3*I
ZF (CA. GT. IIS_)) C& ,._6 'JO
CC,,-2. / (YJeT_,_H (I_ 3*X 3) ) . (I./IL ]*COS (1_ 3*T2) - I./IL

)*COS(_*PI)),SI_t£LJ,I)oiSI_B ICA)-_',_(IL3.X))'*
cose (CA))
-2.*COSIKePI) /(_'9I) *sIq (IL)oT) * ([l_ |-_)_D)
-l[11)/(I.-ZZ2)'W.*(SIq(_I/2.'*{)) *'2*!11( (ILP1
• Z)/(l_ePI) *(:IP(-ZAD)-r][p(-C&B))/(1.-IIP(-CAI))
Xr(ZI. G1'. 1) C_B,0. J
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01930
Oqg10
01gSO*
01960,
J9970*
01980*
01990
05000*
_5010*
05020*
05030,
05010
05050
05060
05070
05080
05090
05100
05110
05120
05130
05110
05150
05160
05170
05180
05190
05200
05210
05220
05230
052_0
05250
05260
05270
05280C
05290C
05300C
05310
05320
05330*
053_0
05350
05360
053?0
05380*
05390
05=00
o5alo
o5_2o
05130*
051q0
05150
05160
05110
05180*
05190
_5500
35510
)5520
_55]0,

1

11

zp(XT.GT. 1) COD-O.O
zr(zz._O.1) C_B--2./ITJe"t"ANH(ZT.3=_3))e(CO$I.SL3QT21
*COS(KePZ)) eSi_ (XL]eT) e(COSiI(C_)-TA'IE(XL3eX]) e,SZ._tH
(Cl))-2..¢:)S(Ke?T)/(.T-PZ] -St_ (XL3*T)* IE1[P (*CA_) **.
Z1)/(1.-!Z2)DXL3"_.e(SZ,_(p_/2.e._)) +=;*COS(XT.P3eX) e
XLP3/(KePZ) "(-rXP(-CAD)-°_P(*¢_B)I/II.-_XP(*C_A))
ZP(TT.10, 1) CCC'-2./(T3e':XYH(ZL3eX3)) *(COS(XL3eT2)-
COS(KePT) ) *_.0$ (XL3eY) * ($:_ (_.A) -';._'lM (ZL3eX3) "¢0$ H (CA)
)-2. *¢C_ (P:*_) / (_* B:) +COS (ZL 3-t) -XL,_* (_.XP (-_&O)- _Zl) /
(1.-l[12)*q.*(SI_(PI/2.eK)) o*2=SZH(XLQ3,X)/|?Z*.'¢) *XLP]
• (I_ZP (-CA[:) *_.XP (-CJ_8)) / (1.-ZXP (-el&))
GO TO 1
12"F0_i2 (D!,ZL3)
B2"FU._E2(CY,XL3)
D2=A2eCOS((J-_) .ZL3eOY)*B2eS_(IJ-2IeIL3eDT)
CO,, rO _ £I:::(Y,, Ir3 oz 1.3, X 3, C2, I[, T)
ZP (Z1r.GT. 1) CI_B =0. ,3
ZP (ZT.GT. 1) C£D"O. 0
11' (TX.[_. 1) _ BB'I'g,_DEX (_ ,T3, X L3 ,X3, _2, Z,_)
ZF (ZT.-_O. 1) CC:"/"J _D_T (K, T 3, XL3_X3, :;_ X, T)
CB (O) .CB (J) *_.._B
CD 10) "CD (J) *C_D

C (O) -c(J) ,CC
DO 7 J"1,N
D_T'C0 (3) "P (3)
DDT'CZ_ (J) * P (J)
D_[LXuD._L Z*DET
DEli.Y= OILT*D_?
TT'CCJ) "r(J)
T=T*'t'T
T-T*C (?,ip 1)
DELX- _lrLX,CB (_P 1)
DELT-I)EL _t*CD ( '_P 1)
BtTUII N
EHD

eiJOOOOO OOOO_ Oe e4iO 4) OeO cello O OO _e e_e oo eo o_oo_oo oooo

ALI, :o'_cTIo'_: ARE r-IST_D e-_.OV.
Me coo 4o0,o • to_, ee eo_ oeeo oeooooo ee ooo o _04, e_eeo_o Moo

FOMCTXO_ P3._1(T,Z)

PURAI"COS(2.eXeY)/(Xeo3eYo*2) *(SXH(;.-IO_r))/(2.IToX,_,2)
• I./T- 1./(_e* ]e_Oe_)
RE:TOII U
END
FO IICT_CN ]POHA_ (Ye I_)
FUP;A20*2.o(_OS(2.oX*_))/ (ZeOleTem2)-2. *(S_N (2.e[eT))/(xoo2
OT) *2./(Ze* 3e Tee2)
g ETURH
E_C
It'ONCTIO_ POPI). ] (T,,Z) •

PUNAJ" (°l./Z*t./(_[ee)'te*.'*))*qOS(2.el[eY)*l.5/(Xee2+t]
*SZ,q( 2.eXOT)- 1./(Zee ]*Te*2)
R_rTOlqk
_XD
PDI;CTZC.I PU.',ln.l(y.Z)

rUNBlt.S/tTeXe*2) *_OS(2.*][*Y) -1./(T**2*1[*0]) *SZll(2.oZeT)
* 1.5/ (yoxe*2)
l ZTOI'I
|IIC

P_NCTTOR FOq[1_ (TeE)

rIJ M_2st-_. / (TO ZOO_) oCOS ( _. OZIT) i. 2./(T ee _oxoo3) o5:ll (2. oX°T
) " 2./ ('l[eZe*2)



$55_0
05550
0556'O
OSS70
055804,
05590
05600
05610
05620
05630
056 aO
05650
05660
05670
05680
05690
05700
057104,
05720
05730
05740
05750
05?60
05770
05780+
05?90
05800
05010
05820
05830
05840
05850
0586O
05870
0588O
05890
05900
05qI0+
05920
0:5930
05940
05950
05960
05970
05980
05990
06000
06010
06020
060 30
36040*
36050
;)6060
06070
)6080
)6090
)61 O0
06110*
26120
06130
06140

OF ")OOR QUALITY

BETgEI
END

FONCTZON FON_3(v X)
/'IIHB3,,,1.5/(T,,lee2) *_OS (2.eIeT) 4, (1./1-1./(Tee2eI•e3)) •
SZN (2.•XeT) _o 5/(¥eZ*"2)
RETURN
BND

1PgNCTION F'ONCC(KeTI,XL,X1,D,X,T)
CACuXL• (K4,X1)
ZF(CJkC.GT.63¢) CA."'630
Clt_XLeX Ie2.O

IF (CAP.GT. 630) C&P =630
8Zla.VZP (-C AC)
EZ2-,IXP (-C&P)
CAl:'XLe (Z l-Z)
ZF(C10.07.63C) C.Lg,,6_O
FUNCC=2./T le C_'SIN (XLeY) q'(RIP (-C_.D) -_EZ 1)
/ (1.-_Z2)
i_ETOIlN
END
FUNCTION FONDC(K,TI,XLeXI_D,X,T)
CA-ILeX

ZF(CA.GT._50) CAt, 50
PURDDs-20/(TIeT%'IH (XLeX1)) +De (SINH(CI}-TINR(XLeXI) •
COSU(CA))oSIN (XL'Y)
BETOR.N
EHI:
PUNCTTO.q P_tCZX(K, T1,XL,XI,D,I,_)
('AC"Z Le (I+I1)
IP(CAC.GT,63_) .'1L.',630
C&IL),,lrLe 11,, 2. ;
IF (C,_ P. C..T. 6 ] ._) CIP,630
C1 D'-XLe (1[ 1- _.)
IF (CAD.GT. b3C) C&D=6]O
EZI,,_XP (-C_C)
EZ2-EXP (-CAP)
FgRCEX,,2./Ile*r'e=,I_ (EL*T) e(EXP(-CAD) _EZ1)*KL
/ ( I .-'.Z2)
RETOBN
END
FONCTTCX FU_CC-T(K, TI,XL,II,D,I,X)
C&C,,XL • (X+XI,_
IF (C&C. GT. 63_.) CACz_.30
C&P-XLeIlo2.0
ZF(CAP. GT.630) CApe630
C_D',XL• (X I- _)
IF (C_0. CT. 630) CAD-630
EZ 1,,_ XP (-CAC)
FZ)"EX ? ('CAP)
FONC_:T'2./Y leDeCOS (XLey) *XL* (ZIP (-C_,C) -ZZ1 )/
(1. "EZ2)

RETURN
ENC
FUNCTION FO_i'DEX(KeTI,XLeX1,D,XeT)
CA'XLeX

?ONCEX,,-2./(I1°TAH_4(XLeI1) ) mDm(COSH(CA)-_&IlR(XLeX1)
*SI._H(CA))-IL*SI_()[LeT)
IETORI
clio

7011C?ICR /'UNDZT(_,YI,IL,II,D,I,T)

152
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06150
06160
06170
06180*
06190
06200

C&=XLeI
I_ (CA. CT. 950) CJL=,q,50
l*01_DElru-2 ./(YleTA_X (ZY..eI|) ) eD,= (STIR (CJ) -TJlIH (][LOZ 1) *

COSR (C|)) *COS (XL*_) oIL
|ETOiI_I
RID
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PART III

FINITE ANALYTIC NUMERICAL SOLUTION OF Two-DIMENSIONAL

NAVIER-STOKES EQUATIONS IN PRIMITIVE VARIABLES



ABSTRACT

m

i

_L/'_;it( NOT FILMED

A numerical scheme called the 'Finite Analytic Method' is used

to solve the two dimensional Navier-Stokes equations. The basic idea of

this method, which was developed in the last ':hree years, is to obtain lo-

cal analytic solutions and use them in the numerical solution of any

partial differential equation, linear or non-linear. The flow region is

subdivided into a number of small rectangular subregions, in which the

Navier-Stokes equations are linearized and an analytical solution obtained.

When the local analytic solution is evaluated at an interior point of an

element a linear algebraic equation is obtained relating the interior

nodal value with the neighboring nodal values. The local finite analy-

tic solutions for all elements are overlapped to cover the entire flow

region. While the behavior of the non-linearity of the Navier-Stokes

equations is preserved, a _et of linear algebraic equations result from

the analytic solutions. This set of linear algebraic equations is then

solved iteratively to provide the numerical solution to the total prob-

lem.

A general 9-point Finite Analytic CFA) formula is developed for the

Navier-Stokes equation in a finite element. The Navier-Stokes equations

are formulated using the primitive variables. A new iterative scheme

which solves the continuity equation, Poisson pressure equation and the

momentum equations (i.e., x- and y-momentum equations} for the

three primitive variables is devi_ed, l'hc FA n_,_cr/cal solution

iii



is first obtained £or stagnation point £1ow and a comparison with the

exact solution is made. Then the formula is used to obtain the numerical

solution for a flat plate-wake combined problem and also for a square

driven cavity flow. The results are obtained for Reynolds numbers 100,

400, and 800.

It is shown from the above example that the FA numerical solution

converges rapidly and the FA method gives accurate and stable numeri-

cal solution.

iv
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C}IAPTER i

INTRODUCTI ON

The Navier-Stokes equations are a unique set of equations in the sense

that only a handful of exact solutions of these equations are available.

This is mainly due to the non-linearity of the equations and the coupling

of variables with partial differential equations of higher order. In

addition, it is often required to be solved for complex geometry and

boundary conditions. Therefore, the numerical solutions of the Navier-

Stokes equations governing the flow of a viscous imcompressible fluid

have been the subject of many studies during the last few decades. In

case of two dimensional flow, there are two ways of formulating these

equations, namely, the vorticity-streamfunction formulation and the

primitive variable (p,u,v) approach. For a two dimensional flow,

there are two coupled governing equations, one linear and one non-linear

(or quasi-linear) to be solved using the vorticity-streamfunction ap-

proach and three coupled equations, one l/near and two non-linear

(or quasi-linear),to be solved using the primitive variable method.

In the past, many investigators had solved Navier-Stokes equations

numerically with the vorticity-streamfunction formulation for two

dimensional incompressible laminar flows. The obvious advantage for

this choice was that there are only two coupled equations for vor-

ticity and streamfunctton to be solved. The third variable, namely

pressure, can be solved afterwards. This formulation, however, has a



disadvantage in that it is not easily extendable to turbulent flows and

three dimensional flow applications. Another disadvantage with this

method is that there is difficulty in specifying the vorticity boundary

condition. With this method of calculation, it is possible to obtain

the velocities from the stream function. The pressure distribution is

calculated once the velocity is known. The primitive variable approach,

on the other hand, has more unknowns and equations to be solved simul-

taneously. The difficulties in solving primitive variable approach

numerically are first the conservation of mass cannot be easily satis-

fied, and second the numerical solution is relatively unstable. There-

fore, it requires various schemes to stabilize the numerical solution.

However, it is preferred over the vorticity-streamfunction method as

the pressure and velocity variables have more practical value than vor-

ticity or streamfunction. What is more important, the primitive

variable approach can be extended to three dimensional laminar or tur-

bulent flow.

In the present work, the recently developed finite analytic method [1]

is employed for solving Navier-Stokes equations fomaulated in primative varia-

bles. Before introducing this method, a brief review of other numeri-

cal schemes is done. One of the most widely used method is the finite

difference scheme. In this scheme either a forward difference or a back-

ward difference or a central difference formula is used to replace a

derivative in the governing equation, Of the three different formulae,

the central difference formula has a better accuracy and is preferred over

the other two. However, it cannot be used near the boundary as an

extra node has to be located outside the boundary of the flow. It is
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also found that the use of the central difference formula for convective

term for high Reynolds number flow may develop numerical instability [2].

This difficulty is p_ly overcome by introducing the upward (or upwind)

differencing method which shifts the difference scheme toward the up-

stream. The upwind difference scheme, however, produces large numeri-

cal diffusion and must be made judiciously at a given Reynolds number.

Another method widely used in the calculation o_ Navier-Stokes

equations is the finite element method. This method considers an approxi-

mate function which is often a polynomial of low degree in a small ele-

ment of the flow. However, the approximate functions in general cannot

satisfy the governing equation exactly. The approximate functions

are made to satisfy the governing equation in an integral sense by the

weighted residue method or variational principle. The integral form

results in algebraic equations which are then solved iteratively. This

method seems to produce more stable results than the finite difference

but it is not problem free. Problems of accuracy and stability still

remain, particularly when the flow of high Reynolds number is con-

sidered.

In the present study, the method of numerical computation used is

a method recently developed by L£ and Chen Ill. This method is called

the Finite Analytic (FA) method. In this method an analytic solution

is obtained in each element of the flow region which is then evaluated

I at the interior node. This results in a set of algebraic equations

which is then solved iteratively by any of the iterative schemes avail-



The FA method will be used to solve the Navier-Stokes equations for-

mulated in the primitive variables of u, v and p.

In Chapter 2, the basic principle of the FA method is described.

In Chapter 3, the solution of primitive variables for the Navier-Stokes

equations is obtained by the FA method. The flow chart and the

method of computation for the numerical solutions are given in

Chapter 4. Then in Chapter S, a simple case of stagnation flow which

has an exact solution is considered as an example to verify the

FA solutions obtained in Chapter 5. In Chapters 6 and 7, this FA method

is used to obtain solutions for flow over a flat plate and in z cavity.

The detailed derivations of the solutions in Chapter 3 are given in

Appendices A, B, and C. The computer program is given in Appendix D.



CHAPTER 2

PRINCIPLE OF THE FINITE ANALYTIC METHOD

In the Finite Analytic (FA) method of solution, the total flow

region R under consideration (fig. 2.1) £s divided into a number of small

rectangular or square subregions called elements. In each of these

elements, the partial differential equation (PDE) governing the flow

is solved analytically. If the PDE is non-linear, it is linearized in

each of the small elements and analytical solutions are obtained in

those small elements. The local analytic solution is then evaluated

at an interior node and the FA solution is written in the form of an

algebraic equation relating the evaluated, interior nodal value to

its neighboring nodal points. By grouping these FA solutions of all

the elements which overlap to cover the entire flow region as shown in

dashed line in fig. 2.2, a system of linear algebraic equations is ob-

tained. These equations are then solved iteratively to provide the

numerical solution in the total flow region R.

As an example, a general elliptic PDE L(_) = G

is considered where L is any linear or non-linear operator. When the

boundary conditions are properly specified, the problem is welt posed.

If the entire problem had an analytic solution, a numerical method of

solution would have been unnecessary. However, for most engineering

problems, due to the non-linearity of the equations or the complexity of

the geometries and boundary conditions, analytic solutions cannot be
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obtained. Therefore, numerical techniques are used to solve these

problms.

In the FA method, the geometry whether complex or simple is broken

into a number of small elements and the PDE is solved analytically in

these small elements. As shown in fig. 2.1, the region R is subdivided

into smaller regions or elements by passing horizontal and vertical

lines through the region. These lines intersect at points (i,j) where

i = 1,2,3,...,IMAX and j = 1,2,3,...,JMAX. To find the solution at any

node (i,j), a region enclosed by the eight nodes (i+l,j+l), (i+l,j),

(i+l,j-l), (i,j-l), (i-l,j-l), (i-l,j), (i-l,j÷l) and (i,j+l) is con-

sidered. These notations for the nodes are abbreviated as NE (north-

east), EC (east-central), SE (south-east), SC (south-central), SW (south-

west), WC (west-central), NW (north-west) and NC (north-central), re-

spectively.

The problem is now reduced to one having many finite elements where

analytic solutions are sought. However, even after breaking up the

complex geometry of region R into small elements, the analytic solution

may still be difficult to obtain as is the case with non-linear PDE

like the Navier-Stokes equations. In this situation, the non-linear

terms of the equation are locally linearized in each of the elements.

For example, the non-linear convective terms in the N-S equation can be

locally linearized by taking the convective velocity components as an

averaged velocity of the local elements. Since the local linearization

is applied only to a small finite region, the overall non-linear ef-

fect is still preserved by changing the convective velocity in each

element.
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Now, consider a local element E as shown in fig. 2.2 and let the

11nearized PDE to be solved in this element be L(¢) = G. The analytic

solution when obtained is a Function of the boundary conditions of this

element. ThereFore,

, = ¢[FNCx3, tsCX3, eECY), fwfy), x, y, h, k, G], (2.13

where fNCx), fs(X), fE(y} and fw(y } are the boundary conditions on the

northern, southe_a, eastern and western sides of the element, x and y

are the independent variables, h and k are the grid sizes in the x and

y directions and G is the non-homogeneous term. The functions represen-

ting the boundary conditions can be approximated by polynomials of

second degree or other suitable functions. For example, the northern

boundary condition can be written as

2
fNCX) = aN + bNX + CNX , (2.2)

where the coefficients aN, b N and c N can be expressed in terms of the

three nodal values of ¢, naraely CNW' CNC and #NE" Thus

fNCX) = fN (_NW' CNC' *NE, x). (2.3)

Similarly for the other sides, the boundary conditions are

fsCX) = fs (¢SW' ¢SC' ¢SE 'x), (2.4)



fE(y) = fE (¢NE' CEC' ¢SE 'y_'
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C2.S)

fw(y) " fw (¢NW' ewe' ¢SW ,Y)" (2.6)

With these boundary conditions, an analytic solution is obtained

for the element under consideration. To evaluate ¢ at the interior

node P, the values of x and y are substituted in equation _ !). This

gives

¢p = $p($NE' CNC' CNW' CEC' CWC' ¢SE' ¢SC' ¢SW' G).
(2.7)

This is the fundamental formula for the FA method. From this, an

algebraic expression is obtained as

¢p = CNECNE + CNcCNc + CNwCNw + CECCEC

+ CwcCwc + CSECSE ÷ CSC¢SC + CSW¢SW + F(G) , (2.8)

Equation (2.8) is the 9-point FA solution to the PDE.

At this point, it is worth mentioning that equation (2.8) gives

the exact solution for the point p in the element in the sense that it

is obtained from an analytic solution to the linearized PDE in the

finite element E. On the other hand, in the finite difference method,

each derivativ_ in the PDE is approximated using Taylor's series

expansion of the dependent variable about its neighboring points there-

by committing the truncation error. This significantly reduces the

accuracy of the solution obtained from the finite difference method.
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Another important feature of the FA solution is that, if it is

required to find the derivative of ¢ at the node p, i.e., (_¢/_x)[
p'

the only thing to be done in the FA solution is to differentiate equa-

tion (2.1) with respect to x and substitute the values of x and y in

the resulting expression without loss of accuracy . A trvmcation

error is introduced further if the derivatives are obtained by the fi-

nite difference method.

In the internal small elements of the total flow region R, the

surrounding eight nodal points such as @NE' CEC' etc. in equation (2.8)

are unknowns. However, each is, in turn, expressed as an analytic

function of its surrounding nodal points. Equation (2.8) is thus use(

to express all the unknown nodes in the whole region R. The system of

linear algebraic equations is then formed which is sol_ed m_eri-

cally using any of the iterative methods available. It should be re-

marked here that first the FA solutions for two adjacent nodal values

are obtained from two elements which are overlapping each other. Secondly,

the algebraic equations are obtained from the well posed analytic solu-
!

tlon. Therefore the FA solution is expected to be numerically stable.

This is the basic.principle of the FA method of solution which

wiil be used subsequently in solving the Navier-Stokes equations.
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CHAPTER 3

FA SOLUTION OF 2D NAVIER-STOKES EQUATIONS

In this chapter, the FA solutions of the Navier-Stokes equations for

u, v and p are obtained. The two Navier-Stokes equations for u and v

along with the continuity equation are to be solved for u, v and p.

Though the number of equations and the number of unknowns are equal,

the pressure variable i3 difficult to solve in the conventional form.

The_-eforo, it is more convenient to solve the equations if the problem

is formulated in a slightly different way. The following discussion

gives the formulation of the problem and then the solution.

5.1 Formulation of the Problem

For a two-dimensional, steady, incompressible flow, the Navier-Stokes

equations are

o(/rU + VU } = - P + U6Uxx_ + by.y)_ (3.1)x y x

oCUVx + Wy) = - Py + _{Vxx ÷ vy),) , (3.2)

and the continuity equation is

u ÷ v - 0 (3.3)
X Y '
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Here the fluid has a density P and a constant coefficient o£ viscosity _.

The above equations can be made non-dimensionalwith the following variables

x • p

where Ur and L are some reference velocity and length scales, respectively.

These quantities are substituted£nto the above equations and the re-

sulting equations are

1

uux + vuy = " PX ÷ R'e (Uxx ÷ Uy3')' (3.4)

uv + uv .. ÷ 1__(Vxx + vyy) ,x y Py Re
(s.s)

u + v = O, (3.6)
x y

OU L

r is the Reynolds number. Equations (3.4), (3.5) andwhere Re =

(3.6) have to be solved for the three unknowns, namely, u, v and p.

In order to solve the pressure variable, it is more convenient

to cast the Navfer-Stokes equations in the form of Poisson equation for

pressure. ThLs is accomplished by differentiating equation (3.4) with

respect to x and equation (3.5) with respect to y and adding the two.

The resulting equation is

= (2UxVy+Ux 2 2y I?xx + Pyy. +v ) * _. (Dxx ÷ Dyy)

- (uD ÷ vD ) , (3.7)
x y



where

D=u ÷v
x y
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Fro= equation (3.3), D = 0. Thus equation (3.7) reduces to

Pxx + Pyy = 2 (UxVy - VxUy ) . (3.8)

Now there are four equations to be solved, namely

Pxx + P_7 = 2 (UxVy - VxUy),
(3.s)

+,m = " Px + i (u y.y)uux Y _ + u ,
(3.4)

and

uv + uu = . PY + 1 _/)x y _ (Uxx + u , (3.5)

u + u = 0 (3.6)
x y •

There are, however, only three unknowns. To make the problem well posed,

three independent equations must be chosen. The choice of the equations

depends on the flow. This is discussed in detail in chapter 4 along

with the method of computation. In addition, the problem is still not

well posed without an adequate knowledge of the overall boundary condi-

tions for u, v and p. The usual boundary condition for u and v is

the no-slip and impermeable condition on a solid wall or known flow

profiles at inlet and outlet of a given region. The pressure boundary

condition, on the other hand, is more difficult but can be obtained
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through the use of momentum equation and Taylor series expansion for

pressure. This is done in detail in Chapter 4.

In order to derive finite analytic solution for numerical computa-

tion, the local analytic solution is sought in each local element. It

is thus necessary to specify the boundary conditions for each element.

The boundary conditions for the three variables u, v and p in this

investigation are expressed in terms of the eight boundary nodal values

surrounding the element. These nodal values are, in general, unknown

and interrelated. So the FA solutions of all the elements in the re-

gion R are coupled and eventually determined by the overall boundary

conditions. Approximation of element boundary conditions is important

for obtaining a proper solution. Improper or imprecise numerical treat-

ment of boundary conditions invariably leads to unacceptable or unreli-

able solutions.

In the following sections, the FA solution to each of the equa-

tions in an element is derived.

3.2 Local FA Solution of Poisson Equation

The Poisson equation for pressure derived in section 3.1 is a

linear, second order, nonhomogeneous partial differential equation.

This equation is to he solved in each element of the total region R in

fig. (3.1). A typical element E with the boundary conditions is shown

in fig. (3.2).

Now, the problem is to solve the two dimensional Poisson equat£on,

Pxx * P)ry " 2(UxVy " VxUy), {3.9)
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in an element as shown in fig. (3.2) with the boundary conditions

p(h,y) - p_(y)

p(-h,y)- pw(:y)

p(x,k) - PN(X)

pCx,-k)- PsCX)

(3. Io)

In order to derive a 9-point finite anal_£c fo1_ula, the boundary

conditions in the present study are approximately represented by sec-

ond order polynomlals in x or y, For exaanple

2
pH(y) - aE + bey + cEY

where

aE = PEC

i
bE = 2--_--(PNE- PSE}

I

cE = _ (PNE " 2PEc + PSE )

(3.11)

The other three boundary conditions are similarly _r£tten as

pw(y) - aW + bwY + Cwy2,

where

: PWCl
bw _ (PNw - PSW )

1

cw = _ (PNw " 2Pwc + PSW )

(3.1_)
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and

2
PN(X) " a N ÷ bNx ÷ cl_ ,

where

aN = PNC1 1
b N = _ (P_ - p_)

1

CN = _ (PNE - 2PNc + PNW)

(3.13)

and

2
Ps(X) = a s + bsX + CsX

where

as = PSC

I
bs = lh (PsE PSW )

1

cS = --_ (PsE-2Psc+Psw)
2h"

(3.14)

The nonhomogeneous term in the Poisson equation is assumed to be a

function of x and y in the derivation. This function is then approxi-

mately expressed as a second degree polynomial in x and y and the coef-

ficients of this polynomial are written in terms of the nodal values of

j

the function.

Since the Poisson equation for pressure is linear, the problem is i

solved by dividing it into two simpler problems Pl and P2 and then 1

J super-imposing the results to obtain the final _olution i.e., p : Pl * 1
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Problem (I): Homogeneous equation with nonhomogeneous boundary condi-

tions, i.e.,

Plxx + = 0Plyy

with

(3.15)

Pl = PE (y} at x = h ,

Pl = PW{y) at x = -h ,

Pl = PN (x) at y = k ,

Pl = PS (x) at y = -k .

Problem C2):

with

Nonhomogeneous equation with homogeneous boundary condi-

tions, i.e.,

P2xx + P2yy = 2(UxVy - VxUy) (3.16)

P2 = 0 at x = _+ h and y = _+ k.

Solution to Problem (i):

Again, for simplicity and due to linearity, th_ problem is di-

vided into two parts, each having two homogeneous boundary conditions.

Thus

Pl(X,y) = Pla(X,y) + Plb(X,y) ,

where

Plaxx + Playy = 0

(3.ly)

(3.18)

with the boundary conditions
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and

Pla = PE (y) at x • h ,

Pla = PW(y) at x = -h ,

Pla = 0 at y • _k

Plbxx + PlbY7 • 0

OF POOR QUALITY,

(3.19)

with the boundary conditions

Plb • 0 at x = _+ h

Plb = PN (x) at y = k ,

Plb • PS (x) at y = -k.

The solutions for Pla and Plb are obtained by the method of separa-

tion of variables. These solutions are then superimposed to give the

solution for Pl" The result is

Pl(X,y) = n_=l[ClnSinh UnX + C2nCOSh _n x] Sin Un(y + k)

÷ mX_l[C3mSin Vmy + C4mCosh Vml ] Sin vm (x + h), (3.20)

where gn • nw/2k and v • =_/2h.m

The constants in equation (3.20) are given in Appendix A along with the

detailed derivation for Pl"

Solution to Problem (2)

ks mentioned earlier, this problem is solved by expressing the non-

homogeneous term as a second degree polynomial in x and in y, i.e.,
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f(x,y} " 2{UxVy - VxUy )

a4x2 2 2 2= a 0 + alx + a2Y + a3xY + + aSY + a6x Y

2 a8x2y+ aTxY + {3.21)

The nine coefficients in this polynomial are evaluated in terms of the

nine nodal values of the function f(x,y). So the values of the coef-

ficients are

ao=f P
1

al " _ (fEC " fWC)
i

a2 = _ (£NC " fSC )
I

a3 = _ (fNE " fNW - fSE + fSW}
1

a4 ffi _ (fEC 2fp fWC)

as 2_2 " +
= 2k2 (fNC 2fp + fSC )

1

a6 = 4_2k 2 (fNE + fSE + fNW + fSW - 2fEC " 2fwc - 2fNC

a7 ffi_ (fNE ÷ fsE - fNW " fSW "2fEC - 2fwc)

a8 = _ (f + f f f 2f + 2f ],4h--h='_k NE NW - SE - SW " NC SC

2fsc + 4fp)

where the subscripts denote the value of f(x,y) at that node. With this

polynomial approximation, the solution for P2 with homogeneous boundary

conditions is obtained as

P2(x,y} • n_=l[CsSinh _n y + C6nCosh _n y + C7 + C8Y + C9y2] *

Sin tn(X + h_ (3.22)
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The constants in equation (3.22) are given in Appendix A along with the

detailed derivation for P2"

Equations (3.20) and (3.22) are added to give a solution for Poisson

equation. So , with _ - n_/2h,
n

p(x,y) = n_1[ClSninh UnX * C_osh _nx]Sin Vn(y ÷ k)

+ mEIl [C3_inh Vmy + C_osh UmY]Sin Vm(X + h)

+ n_l [C5_inh knY + C_osh %ny + C 7 + C8Y + C9y2]Sin ln(X+h)"

(3.23)

The FA 9-point foTmula for any point in the element is obtained by sub-

stituting the corTesponding values of x and y in equation (5.23). To

find the pressure at the center of the element, x = 0 and y = 0 are

substituted in the above equation. This gives

pp " p(O,0)" _,_=I C2Sin(_ + m_=1 C4SinCm_r/2)+ n_I[C6+C7 ]Sin(n_/2)"

(3.24)

This equation is written in terms of the nodal values of p(x,y) and

f(x,y) by replacing the coefficients in the above equation by their ex-

pressions. Then the FA formula becomes

pp " CNEPNE + CEcPEc + CsEPsE + CNcPNc + CscPsc

+ CNWPNw + CwcPwc + CswPsw + CNE'fNE + CEC'fEC

+ CSE'fSE + CNC'f_;c + Cp'fp + CSC'fSC + CNW'fNM

÷ CNC'fWC + CSW'FSW ,
(3.2s)



r
oR|GI_/:_,LF,#/.?._i:,I_.

OF pOOR G _.!_''''_;
24

' ' in the
where the finite anal)rtic coefficients CNE, CEC,...,CNE ,CEc ,

above algebraic equation are given in Appendix A. For example,

r. 16 Sin(m_,/2)" [_3"] - o.zos31s,CEC n-l,5.. Cosh(mw/2)
m

2 E
CSE' = 8h [m=1,3

1 1 32 4 32 Sin[m_r/2)I
...Cosh(m_/2)[7- -_) - (-r_- -_Z) 3 3 "J

m 7r m _T m _ m Tr

= 0.001895 h2 .

An important feature of this formulation that can be revealed with

a careful examination of the nodal coefficients of the 'p' terms

(CNE, CEC,...) is that they are independent of the specific problem

considered and hence are universal constants. So these coefficients can

be used to solve any equation of the form V2p = f. For the 9-point PA

solution for the Poisson equation, this implies that they can be calcu-

lated once and for all and be used thereafter. Further, if the grid spacing

h were assumed equal to k, a great simplification and reduction in com-

putation may be achieved, since the constant coefficients involving the

Sin Pnk and Sin _mh terms become the same. The coefficients CNE, etc.

for the homogeneous part become universal constants while the coeffi-

cients CNE, etc. for the nonhomogeneous terms are universal constants

multiplied by h2 or k2 or hk. Thus, when h = k, the following schematic

FA solution is obtained for the Poisson equation.

0.044685 0.205315
0.'205315
0.'044685 0.2'05315"

0.044685'

0.205315 x Pn +
d',044685

pp --
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0.001895

g h2
0.01855
x h _
0,001895
x h 2

0.01855
x h z

0.21289
x h 2

0.01855
x h 2

O. 001895

O. 0185S

0. 001895

xf
n

Here the mmerical values in the block are the corresponding FA coeffi-

cients to be multiplied by their corresponding nodal values Pn or in"

n denotes the nodal points (8 for Pn and 9 for fn ).

3.3 Local FA Solution of Momentum Equation

The momentum equation for u or v is a nonlinear (or quasi-linear)

second order partial differential equation. Since an analytic solution

for the whole region of flow is not available, the finite analy'clc method

is one way of obtaining a numerical solution. As in the solution of

Poisson equation, the flow region R in fig. (3.1) is divided into many

elements with the boundary conditions specified in flg. (3.3). To

slmpllfy the solution, the grid spacings in the x- and y-directions are

assumed to be uniform. Further, to solve the nonlinear momentum equation

anal)rtically in the element, the non-linear convective terms are locally

llnearlzed. This llnearlzatlon is a reasonable approximation as long as

the elements are quite small compared to the whole region.

In this section, the solution of the momentum equation for u is

obtained. From this, the solution to the v-moment_m equation is written

by inspection since the two momentum equations are similar to each other.

The u-momentum equation is written here for convenience.
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UNW

uW (Y) Uwc

m

Y

'l UN(X)

l uNC

Point P u
P

_y-k

_x=h

"F£

USW ! USC _ uSE_ Us(X}

i uE (y)

XI -
i
I

____

Figure 3.3 Typical Finite Analytic Element for

Momentum Equations



(Reu)ux + (ReV)Uy = -RePx + [Uxx + Uyy) ,
(3.26)
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ReUav = 2A and ReVav = 2B , (3.27)

where u
av av

and v are the averaged values of u and v in the element E.

Substituting equation (3.27) for Reu and Rev, equation (3.26) is

linearized to

+ 2Bu = u + u - Re
2AUx y xx yy Px" (s.28)

Equation (3.28) is now a PDE with constant coefficients. The boundary

conditions for this equation are

u(h,y) = uE{Y)

u(-h,y) ffiUw(Y )

u(x.k)= _(x)

u(x,-k)= Us(X)

(3.29)

where uECy], UwCY), uNCx ) and UsCX) are each expressed by an appropriate

function specified by three boundary nodal values (equations 3.33 3.36}.

Introducing a change of variable

u = ue (Ax '+ By) (3.30)

in equation (3.28), a simpler form of the momentum equation is obtained,

i.e.,

(A 2 + B2)u = u + G (3.31)
xx y'y

The boundary conditions are

- Re Pxe -(Ax + By].



GCh,y) = UECY)e'(_l + By} .

_(-h,y)= uwCy)eCAh" By) ,

6(x,k) = _Cx)e "(Ax ÷ Bk) ,

_(x,=k) = usCx)e'(Ax - Bk) .

OF POCR (,),_,TY
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(3.32)

The problem is to solve equation (3.31) with the boundary conditions

(3.32) for an element. Since the momentum equation has been linearised,

the above problem is split into simpler ones. The final solution is

then obtained by superimposing the solutions of the simpler problems.

Before solving the problem, the boundary conditions (3.32) are

expressed as second degree polynomials in x or y. The coefficients

of these polynomials are written in terms of the surrounding nodal

velocities. The easteTn boundary condition is

2

uE(Y} = aE + bEY + CEY ,

where

_i a E = uEC

b_ _- (UNE- USE)
1

CE 2=_ (uNE - 2uEC + uSE)

For the western boundary

(3._3)

2
uW(y) = a W + bwy + cWy

where



r

1
bw - _ (UNW - USW)

I

_w" _ (_Nw" 2Nc ÷ Usw)
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For the northern boundary

2
UN(X) = aN + bNX + CNX

where

aN = _c
1

bN = _-_ (UNE - uNW)
1

(3.35)

and for the southern boundary

2
Us(X) = aS + bsX + cSx

where

aS = USC

I
bs = 2_ (uSE " Usw)

1

cS = _2h2 (uSE - 2Usc + USW)

(3.36)

With these boundary conditions, the problem is spilt £nto three

simpler problems. They are

Problem (I): Homogeneous equation with two homogeneous boundary

conditions, i.e.,
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with

(A 2 + B2)G 1 = Ulx x + Uly.y

Ul(h,y ) = (a E + bEY + cEy2)e-(Ah + By)

Ul(-h,7 ) = (a W + bwy + cwy2)e(Ah - By)

Ul(X,k)= O ,

_]l(x'-k) -- 0 .

(3.37)

Problem (2): Homogeneous equation with other two homogeneous boundary

conditions, i.e.,

(A2 +
B2)112 = U2xx U2yy (3.38)

with

G2(h,y) = 0 ,

G2(-h,y) = 0 ,

u2(x,k) = (aN + bNX 4.CNX2)e'(Ax + Bk)

u2(x,-k) = (as ÷ bsx + CsX2 )e-(Ax - Sk)

Problem (3): Nonhomogeneous equation with homogeneous boundary condi-

tions, i.e.

(A 2 + B2)u3 = U3x x ÷ U3yy RePxe-(Ax + By) (3.39)

with

_3(h'Y) = 0 ,

G3C-h,y) = 0 ,

u3Cx,k) - 0 ,

GzCx'-k) = 0 .
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The solutions to these three problems are finally superimposed to give

the solution of the momentum equation i.e., u = ul + u2 + u5 "

Solution to _roblem (I)

Problem (I] is solved analytically using separation of variables.

= n_/2k and qn2 = A2+B2+X 2The solution is, with Xn n '

Ul(X,Y) = n_=l{ClnSinh(qn x) + C2nCOSh(qnx)}SinX (y+k) .n
[3.40]

The constants in the above equation are given in Appendix B along with

the detailed derivation £or Ul(X,y).

Solution to PToblem (2)

The solution to this problem is exactly similar to the solution to

problem (I) (equation 3.40). If x,y,h,k,A,B and n in problem (1] are

replaced by y,x,k,h,B,A and m, the solution of problem (2) is identical

to that of problem (I). Therefore, the solution to problem (2) is

= [x+h)u2[x,y) m_l{ClmSinh[qmy) + C2mCOSh[qmy _ Sin Um [3.411

The constants in equation (3.41) are given in Appendix B.

Solution to PToblem [3]

The nonhomogeneous equation [3.39] can have different solutions

depending on the way in which the nonhomogeneous term is expressed.

Since this tem represents the gradient of pressure in a sma1! element,
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it may be assumedconstant over the element without significantly affec-

ting the accuracy o£ the solution. I£, however, a very accurate result

is required, the pressure gradient term can be expressed as a polynomial

in x and y as was done £or the nomhomogeneous term in Poisson equation.

In the solution given below, this term is assumed constant. The reason

is that the solution is much simpler and saves much con_uter time with-

out any significant loss in accuracy.

The derivation is done in Appendix B. Here, only the solution is

presented, which is, with XE= E_/2h,

u3 (x'y) " _,_1Y 9,(y)Sin)'_, (x,h) ,

where the function Y_(Y) is

Y_(Y5 = C3_eq_Y + C4_e'q_Y + C5_ e'By-

(3.425

(3.435

The constants in equations (3.42) and (3.43) are given in Appendix B.

_he three solutions equations (3.40), (3.415 and (3.425 obtained

above are now combined to give the solution to the momentum equation.

So

But

thus

&(x,y) = Ul(X,y) + u2(x,y5 + Uz(X,y5 .

uCx,Y) = u(x,y)e (Ax ÷ By) ,

u(x,y5 = [u (x,y5 + _2(x,Y5 ÷ u3(x,y)leAX ÷ By

(3.44)

(3.451
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To calculate u at an interior node P, x = 0 and y = 0 are substituted

in equation (3.45) to yield

Up = ulp + U2p + U3p . (3.46)

Ulp' U2p and U3p are evaluated from equations (3.40), (5.41) and (3.42)

aad substituted in (3.46). After some rearrangement, the expression

for the velocity is obtained in the form

up = CNEUNE + CEcUEc + CsEUsE + CNcUNc + CscUsc

+ CNwUNw + CwcUwc + CswUsw + Cp(RePx) P •
(3.47)

This is the 9-point FA formula £o_ the momentum equation where the

subscript P refers to the quantity in parenthesis evaluated at the in-

teTior node P.

The finite anal)_cic coe£ficients CNE, CEC,..., in the above alge-

braic equation are given in Appendix A. Some of these coefficients are

shown below

| l {e-Ah E3 e-Bk !_3
CNE " n=l,3 [2Cosh(qnh) _ (E2 + k'_) + _ (E2 + _.v_)}SlnCn_./2)] ,

CEC
l -Ah E3

n=1,3 [2Cosh(qnh) {'_k"- (EI " _)}Sin(n_/2)] ,

_z(eAh-e'Ah(-l) _)

Cp = _=_I
,,=

h(A 2 + _2)2

Sinh(q_B)k + Sinh(q_,+B)k

[ 5inh2.q£k
-1]Sin(in/2) .
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3.4 Solution of Continuity Equation

Like the Poisson equation and the momentum equation, the continuity

equation can be solved analytically. The u-velocity given in equation

(3.45) has been analytically calculated from the momentum equation.

This analytical solution is substituted into the continuity equation

u ÷ v = 0 , (3.6)
x y

which gives

Ax + By
Vy =- [Ul(X,y) + u2(x,¥) ÷ u3(x,Y)]xe

[_l(x,y ) + _2(x,y ) + _3(x,y}]eAX * By . (3.48)

When equation (3.48) is integrated with respect to y, the solution for

v velocity component in the FA element is obtained. If the integration

is from the node SC (y = -k, x = 0) to the node p(y = 0, x = 0), then

the FA solution for v is connected to the eight neighboring u nodal
P

values and VSC nodal value. However, the integration can also be done

fromNC node (y = k, x = 0) to the node p(x = 0, y = 0). Having inte-

grated equation (3.48) and after some algebraic manipulation one has

the solution for v as
P

Vp = 0.5 (VSC ÷ vNC) ÷ CNECNE + CEcUEc + ... + Cpup. (5.49)
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The coefficients CNE,... are quite different from those of equation (3.47).

In fact, they are quite complicated and are, therefore, not used in the

solution. These results are not presented here. Instead, the following

approximat._ solution is used.

Since the continuity equation is much simpler than the momentum

equation or the Poisson equation, it is solved using a polynomial approx-

imation. The approximation involves assuming a polynomial for u,

2 2 2 2
u = a0 + alx + a2Y + a3xY + a4x + a5Y + a6x y

2 2
+ a7xY + a8x y . (3.50)

The coefficients in this equation are expressed in terms of the nodal

values of u. Equation(3.S_ is then differentiated with respect to

x to give ux. From resulting expression, Ux is calculated at all the

nodes in the elements. With these values of ux, a polynomial in x and

i.e
y is written for Ux,

- 2 _6x2y2= + alx + a2y + a3xY + _4x2 + aSY +Ux ao

2 _8x2y+ i7xY + (3.sl)

This equation is now substitt_ted in the continuity equation and inte-

grated with respect to y. Integration is performed once from the NC

node and once from the SC node and the average of the two integration

is obtained. The resulting solution for v at the node p is
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Vp = 0.5 (vNC ÷ VSC) + 0.125 (UNE - uNW - USE + USW) o
(3.52}

The detail of the derivation of this equation is given in Appendix C.



57

CHAPTER 4

HETHOD OF NUMERICAL COMPUTATION

In Chapter 3, the FA solutions for three different equations were

obtained separately. In this chapter, these solutions will be arranged

_.na suitable way to obtain the complete solution of the problem in

the total flow region, R. The method of numerical computation is shown

in the flow chart in fig. 4.1.

4.1 _tomentum Averaging Scheme

As mentioned in Chapter 3, there are four equations to be solved

and only three unknowns. Obviously, these four equations are not all

independent. Two out of the three equations (x- and y-momentum equations

C5.4), (3.5) and the Poisson equation for pressure (3.8)) are independent.

One way of making the problem well posed is to use only three equa-

tions at a ti_e. The pressure is first calculated from the assumed

velocity in the flow region usir, g the Poisson equation. Then, in

every element, the average of the assumed velocities for the element

(5 and v) in the x- and y-directions are computed. If u is greater

than v, the x-momentum equation is used to obtain the velocity u in

that element. Having done this, the continuity equation is used to

obtain the other velocity component in the element, i.e., v. If, on

the other hand, the average velocity in an element in the y-direction

is greater, v is first calculated from the y-momentum equation and then

u from the continuity equation.
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This computational scheme called the Momentum Dom£nRnt Scheme seems

quite reasonable to use but it has some disadvantages. It has a slow

convergence. Furthermore, during iteration, if u is calculated from

the x-momentum equation and v from the continuity equation, this value

of v may not satisfy the y-momentum equation. Also, when u and v are

of the same order, the two momentu_ equations are not used in the momen-

t_n dominant scheme.

In this study, the above scheme is slightly modified to give better

convergence and more stable solution. The pressure is still calculated

using equation (3.8). Next, the average velocities in each element are

calculated from the previously obtained or assumed velocities. With these

•verage velocities, the x- and y-momentum equations are both solved for

uI and v I respectively. One set of velocities is obtained. Now the

continuity equation Ls used to calculate the corresponding velocities

v2 with uI known and u2 with vI known. Then a weighted average of the

velocities Ul, u2 and vi, v2 is calculated to give u and v in each ele-

ment. With this new set of u and v, the Poisson equation is again

solved for p and the whole process repeated till convergence is

achieved.

J

J

J

10 I 2
z

.i

Figure 1.2 Pr(,gsuro Bmmdarv C_mdition
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This computational scheme Is the first of its kind in the solu-

tion of the Navier-Stokes equation and is called the momentum averaging

scheme. In all earlier works, re£ [3,4], the continuity equation is

not independently used to calculate a variable in the solution scheme.

The pressure is calculated from the Poisson equation and then the velo-

cities u and v are calculated £rom the x- and y-momentum equations,

respectively. The velocities calculated this way do not satisfy the

conservation of mass criterion. To bring the ef£ect of the continuity

equation in the solution, the dilation term in the Poisson equation is

not set to zero, though, theoretically speaking, this is zero for any

incompressible flow field. It is stated in ref _ ] that the retension

o£ the temporal derivative of the local dilation in the Poisson equa-

tion for pressure is an essential requirement for the convergence of

the numerical procedure. Any attempt to totally set to zero the dila-

tion term leads to nonlinear instability in the numerical solution.

This is not the case in the present method of solutions as the conti-

nuity equation is used independently as it should be to solve for u

O_ V.

Since the solution technique is iterative in nature, some initial

values for u,_ and p need to be specified. For any Reynolds number,

the initial values can all be set to zero. However, it is a better

idea to use the results previously obtained, if any, for lower Reynolds

number as the initial guess. For example, if the solution for Re =

I000 is required, then the solution for Re = I00 ,_r Re = 400 can be

used as the initial value in the solution for Re = lO00. This prac-

tice can save some computational time though the prescnt FA method is

stable with any _nitial value.
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4.2 Pressure Boundary Condition

Depending on the geometry of the flow, boundary conditions for u,

v and p are specified properly. Usually there is no difficulty in spe-

cifyin E the velocity boundary conditions. The pressure boundary condi-

tion, however, cannot be specified ezactly. To specify pressure at

the boundary, the first few terms of the Taylor series expansion for

pressure are used depending on the accuracy required.

As an example, the wall in fig. 4.2 is considered. The pressures

at interior points I and 2 _re expanded in Taylor series as

42

= { Ax+ PxXI
Pl Po ÷ Px o o

2A.,x_ + ... , C4.Z)

and

(2Ax) 2

P2 " Po + Px o o

Eliminating the second derivative from the above two equations gives

or

4Pl " P2 = 3Po + Pxl o
C2Ax) , (4.3)

I
Po " _"(4Pl P2)

2

I.3" AXPx o
(4.4)

L



To determine px I,, the x-momentum equation
0

43

+ vu = -Px + i Uyy)UUx y _ (Uxx + (4.S)

is evaluated at the point '0' in fig. (4.2).

v = O and u = 0, equation (4.5) becomes
YY

Since at the wall u = 0,

I i IPx = _ Uxx "
0 0

Hence,

I
P0 = 3 (4Pl-P2)

2h

3Re Uxxl 0 (4.6)

Uxx is now obtained using Taylor series expansion for u. So

h3

= + + (h) 2/2_ + Uxx x _-'_,uI u0 Uxl0(h} Uxxlo

• +u Iou2 u0 Ux 0 xx xxx 3_ +
0

(4.7)

(4.8)

Eliminating the third derivative in u gives

i

L

8Ul u2 = 2h2 Uxx 0 '
(4.9)

= I = -Vy = 0Since u0 0 and ux 0 0

8u I - u 2

Uxx 0 2h 2



Hence,
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1 (8Ul - u2) (4.10)
PO --5 (4Pl - P2) - 3Reh "

The boundary pressure on the othe_ walls can be likewise derived.

4.3 Numerical Procedure

S_P1. With the initial guess given and the boundary conditions

specified, the 9-point FA formula for Poisson equation is first used

to calculate the pressure in region R. The pressure at any node (i,j)

is written in terms of the surrounding nodal values. This is done for

all the nodes (2,j), (3,j),...,(i,j),...,(IMAX-I,j). Thus a system of

algebraic equations is obtained which is then solved implicitly by the

line by line implicit method using a tridiagonal solution scheme. This

is repeated for all the lines starting from j=2 to j= Jb4AX-I. At each

line, the 'TRIDAG' subroutine is ,:alled in the main program to solve for

the unknown pressure implicitly. In this way, the solution for pressure

in the whole flow region is obtained. Using these new values of pressure,

the whole calculation process is repeated until the solution converpes to

desired accuracy. This iterative procedure within the equation is called

an internal iteration. The number of internal iterations required for con-

vergence is, in general, proportional to the nt_ber of nodes in a line.

STEP 2. Having calculated the pressure in the total flow region,

the next step is to calculate the velocities at each of the elements.

Before this is done, the average velocities in the x-3irection and the

y-direction are calculated from the initial guess or previous calculation.
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There are various ways of doing this.

for u is written as

For example, the average velocity

%v = =NEUNE÷ aECu_C+ aS_uSE÷ _C:NC ÷ apup

÷ _cUsc + aNw_ * _c_c ÷ %wUsw , (4.11)

where aNE,aEc,.., are fractions which depend on the weightage that

one wishes to give to each node of the element. These coefficients

must all sum to unity, i.e.,

aNE + aEc + .,, + aSW = 1,0 . (4,12)

In the present investigation, the values of aNE, aEC , aSE , aNC , ap,

aSC, aNW, awc and aSW used were 1/36, 4/36, 1/36, 4/36, 16/36, 4/36,

1/36, 4/56 and I/5_ respectively. The average velocity obtained is

equivalent to the integral average of u over the element when u is

approximately fitted with a second degree polynomial in x and y passing

through the nine nodal values in the element.

NOW,

and

A : I/2 * RE * UAV ,

B • I/2 * RE * VAV ,
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are calculated. With these values o£ A and B, the x-momentum equation

is solved for u I and the y-momentum equation is solved for v 1using the

algebraic equation (5.52). The coefficients in this equation are calcula-

ted by the subroutines 'HOMOG' and 'NHOMOG' given in Appendix D.

STEP 5. After calculating u 1 and v I, the continuity equation is

first used to calculate the velocity v 2 corresponding to u 1. Similarly,

using the velocity v I, u2 is obtained from the continuity equation. Ac-

cording to the momentum averaging scheme, the velocities uI anl u2 along

with v I and v2 are averaged using the weighting factors A and B, i.e.,

U l

UlAn + U2Bn

An+B n

and

VlAn + V2Bn
v= n>l

An+ Bn . -

|
P

Using the new values of u and v, A and B are again calculated in each

element and u and v obtained. This process is repeated until a conver-

gence of 10-3 is achieved, i.e., the maximum difference in the values

of u or v (at any node} between two successive internal iterations be-

comes less than 10"5.

After the convergence for u and v is achieved, the old values of

u and v are replaced by the new values. Using these new values, the

pressure is calculated once again. This procedure is repeated until

the solutions for p, u and v converge. In the present investigation

this numerical procedure seems always to produce stable solution.

Thus, no under-relaxation is needed in the calculation.
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CHAPTER 5

STAGNATION POINT FLOW

In Chapter 4. the method of numerical computation was discussed in

detail. In this Chapter, the momentum averaging scheme is used to

check separately the 9-point FA formula for pressure equation and the

9-point FA formula for momentum equation. The stagnation point flow

is used for the purpose. The reason for selecting the stagnationpoint

£1ow is that the exact analytic solution is available which can serve

as a good comparison with the FA solution obtained here.

5.1 Verification of FA Solution for Momentum

Equation

In thi_ section, the FA solutions of the momentum equation (5.47) and

continuity equation {3.52) are isolated for verification o£ accuracy

and stability. This is done by substituting the known pressure distribu-

tion in the momentum equation so that only the continuity equation and

momentum equations in x and y components are solved numerically by the

momentum averaging scheme. This scheme stipulates that the u and v

velocity components in each finite element can be approximately solved

from the continuity equation and the two momentum equations and an average

value taken in the finite element for each of the two velocities. This

is a new scheme and deviates from the existing scheme [5] which calculates

both u and ,, components from both the momentum equations and uses the

continuity e,_ tion only for correction of pressure distribution in

the pressure equation.
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The computational domain for the calculation is shown in fig. (5.1].

The plate is of unit length and the domain extends a unit distance in

the normal direction. The origin and coordinate system are also shown in

the figure. The boundary conditions away from the viscous lay-

er near the wall are derived from the inviscid flow solution, namely

u=x and v = - y. However, on the side BC, the u velocity is given a

near Blasius profile and v = -y. On the side CD, u = x and v = -i.

Between D and A, u = 0 and v = -y. On the surface of the plate, the

no-slip boundary condition is used, i.e., u = 0 and v = 0.

From the potential flow analysis, it is known that the pressure at

any point (x,y) in the domain is given by

P -- _O.5{x 2 + y2) • (5.1)

Reynolds numbers of I00 and 400 are considered in the calculation.

With the pressure distribution known, the 9-point FA formula for the

momentum equation derived in Chapter 3 is used to calculate the velocity

of the u- and v-components; and the corresFonding components are computed

by the continuity equation. The result is shown in fig. (S.2) for Re = I00.

It is seen that the computed result outside the boundary layer

is in agreement with the exact solution upto the fourth decimal place.

The calculation is repeated for Re = 400 and the result given in fig

(5.3) is again in good agreement with the exact solution.
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x

0.1

0.1

0.i

0.1

0.3

0.3

0.3

0.3

O.S

0.5

O.S

0.5

0.7

0.7

0.7

0.7

0.9

0.9

0.9

0.9

nF PO0_{ (_A_iFJ

Table 5.1

Comparison of Exact and Calculated Values of Pressure

Location Exact

Value
Y

0.i -O.OlOOb

0.3 -0.05000

0.5 -0.13000

0.7 -0.25000

0.1 -0.05000

0.3 -0.09000

0.5 -0.17000

0.7 -0.29000

0.3 -0.17000

0.5 -0.25000

0.7 -0.37000

0.9 -0.53000

0.3 -0.29000

o.s -o.37ooo

0.7 -0.49000

0.9 -0.65000

0.3 -0.45000

O.S -0.53000

0.7 -0.65000

0.9 -0.81000

52

Calculated

Value

-0.01017

-0.05016

-0.13016

-0.25016

-0.05016

-0-09015

-0.17014

-0.29015

-0.17014

-0.25014

-0.37014

-0.53016

-0.29O15

-0.37014

-0.49015

-0.65016

-0.4501b

-O.S30lb

-O.OSOl6

-0.81017
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5.2 Verification of the FA Solution for

Poisson Equation

Having checked the FA numerical solution for the momentum and con-

tint_ty equations, the Poisson equation is checked in a similar way. The

velocity distribution in the domain is now given by

u = x and v = -y. (s.z)

In addition to the velocity distriOution, the no-slip velocity is

L_sed at the plate surface. The 9-point FA formula for the Poisson equa-

tion (3.25) is now used to calculate the pressure in the domain. The

result is shown in Table 5.1 where the computed and exact values are

presented. The computed value of pressure is within 2% of the exact

value. The error is probably from the truncation error of the finite

difference approximation used in evaluating the velocity gradients which

appear in the nonhomogeneous turn of Poisson equation.

With these two checks, the calculations for flow over a flat

plate and wake are presented in Chapter 6 and the flow in a square

driven cavity is discussed in Chapter 7.
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CHAPTER 6

FLOW OVER A FINITE FLAT PLATE

6.1 Description of the Problem

In this chapter, the FA solution to the Navier-Stokes equations

is used to calculate the velocity profile over and behind a finite flat

plate. The Reynolds numbers used in the calculation are I00, 400 and 800

based on the plate length and free stream velocity. All previous analy-

tic studies of wake calculation have been reported for large Reynolds

numbers using boundary layer equations and often with additional assump-

tion that the velocity difference in the wake is small compared with

free stream velocity [5]. Furthermore, the near wake solution and the

combined plate-wake solution are difficult to solve analytically be-

cause even when the Reynolds number is large, the boundary layer equa-

tion near the trailing edge is not valid as mentioned by Plotkin and

Flugge-Lotz [6]. The full Navier-Stokes equations have to be used. In

this chapter, the flow over a finite plate including the wake region is

solved from moderate to high Reynolds numbers. Results for Re = 100,

400 and 800 are compared with the existing results of near wake and

far wake solutions.

The computational domain for plate-wake region under consideration

is shown in fig. (6.1). The plate is of length h and the computational

domain in the wake region extends to a distance of 3L behind thc plate

in the direction of flow and a distance of I, in the normal direction.
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The grid sizes in the x- and y-directions are selected depending on the

Reynolds numbers. For Re = 100, the grid size in both the directions is

0.05. The reason for selecting different grid sizes for different Rey-

nolds numbers is to ensure the boundary layer phenomenon in the flow

field is accounted for. Since the boundary layer thickness may be esti-

mated to be inversely proportional to the square root of the Reynolds

number, it is necessary to have at least one node inside the boundary

layer. Hence, the grid size should be at least equal to or smaller than

(1/Re) 1/2.

It should be remarked that in the present calculation the full

Navier-,Stokes equations are used. Therefore, the calculation is not re-

stricted to boundary layer phenomenon or large Reynolds numbers. Since

the Navier-Stokes equations are elliptic partial differential equations,

the boundary conditions must be given on all sides of the computational

domain. It is assumed that the side DC in fig. (6.1) is far downstream

from the flat plate and so the velocity varies slowly in the x-direction.

Therefore, the downstream boundary conditions are taken as u = 0 andx

v - O. If it were not for the economy of the computation, the DC
x

boundary should be chosen furt_.er downstream, say at x = IOL or larger.

From B to C it is assumed that the velocity profile is s)nmnetric about

the x-axis or u - 0 and v - O. Along the flat plate AB, the no-slip
Y

boundary conditions are used i.e., u = 0 and v = O. On the upstream

side RA, the u-velocity is taken to be uniform and the v-velocity is

zero, i.e., u - I and v - O. As for the boundary condition on the side

DE, the u- and v-velocity components are assumed to be constant in the

y-direction as they are far away from the botmdary layer or u = 0 and
Y
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v - 0. The pressure boundary conditions are as follows:
)

Side EA: Px " 0

1
Side AB: Py = R'-eVyy

Side BC: py = 0

Side De: Px • 0

Side DE: py 0

at point O: p = 0

The computational procedures are described in Chapter 4. The n_nber of

overall iterations required for convergence of this solution is about

25 for Re = 400. As for the internal iterations, 10 iterations are

needed for the convergence of the Poisson equation and about 20 for the

momentum equation. For different Reynolds numbers, the number of iter-

ations for convergence is increased. The numerical results are dis-

cussed below.

6.2 Discussion of Far Wake Solutions

In fig. (6.2), results are shown for Re • 400. The curves are

for the u-veloclty at distances of O, O.SL, L, I.SL, 2L, 2.5L :_nd 3L

from the trailing edge of the flat plate. These results are compared

with th_ of Tollmein [7] as shown in fig. (0.3), Although Tollmein

gave results for x < 3L, he stated that the results in fig. (o.3) are

valid only at a distance greater than 5L from the trailing edge of the

plate and for large Reynolds numbers, This is because in obtat.ing

his result, Tollmein uses a Blasius profile at the trailing edge as the
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boundary condition. Since the Blasius profile requires the assumption

of large Reynolds numbers his result is valid only for Reynolds numbers

greater than 10 3. Further, Tollmein used the boundary layer equations

instead of Navier-Stokes equations in calculating the flow behind the

trailing edge. He, in addition, simplified the boundary layer equations

by assuming that the velocity defect in the wake is small compared to the

main stream velocity. These assumptions are likely to cause substantial

error in the solution in the near wake region where the velocity defect

is still large as can be seen from fig. (6.3). Even for u as large as

2.5L, the velocity defect in fig. [6.3) at the centerline is 0.25 which

is 25 percent of the main stream velocity. Therefore, the assumption

that the velocity defect is small is invalid in the range 0 _ x _ 2.5L.

In the present study, the full Navier-Stokes equations are used

to solve the flow over and the wake behind a flat plate. The momentt_

equation used here is

1

uu + vu = -- Uyy) Px 'x y Re (Uxx + - (6.1)

as compared to the equation

1
= --

Ul× Re Ulyy

used by Tollmein. In equation (6.2), u I is the velocity defect i.e.,

u 1 = 1-u. Since the present method uses the full Navier-Stokes equa-

tions, it can be, theoretically speaking, used to calculate velocity pro-

files for Reynolds numbers ranging from very small to large values. Fur-

ther, the combined boundary layer-wake solution can be obtained by this

method without specifying the velocity profile at the end of the plate.

One cf the purposes of calculating the flow over the finite flat platc
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is that there is no existing work which gives correct solutions to the

problem with the boundary layer-wake interaction at moderate Re. Since

there is no exact solution available to verify the accuracy of the pres-

ent results, the computational domain is extended to a distance of 5L

behind the trailing edge so that it may be approximately compared with

Tollmein's far wake result which is claimed to be valid for x > 3L. It

is expected that the solution obtained by using boundary layer equation

"t1must fail at a distance of O(Re from the trailing edge because at this

distance x is of the same order as y (the no_al distance from the center-

line) and the full Navier-Stokes equations must be used.

Consider now fig. {6.2) for Re = 400 and fig. (6,5). Fig. t_.3/ is

restricted to far wake regior or .,.> 3L and large Re. Since fig. to.5}

does not give a curve for x = 3L, the velocity profile for x = M. is

approximately interpolated between the curves for x = 2.5L and x = 6.5L.

Comparing Tollmein's result at x = 3L for large Re with the present re-

sult for x • 5L at Re • 400 in fig. (o.2}, it is seen that the axial vel-

ocity at a given x kn fig. (b.2) is larger than that tn fig. Lb.3). the

velocity predicted in the present a:_alysis is not a Biasius profile at

the trailing edge while the velocity profile in fig. _.3} is a Blastu5

profile. At an)' x location the centertine velocity tn fig. U_.3_ as.v_p-

totically increases from a smaller x'_|lue to :t value greater than that

in fig. (0.2). Physically this implies that the entrainment rate is dif-

ferent in the two cases. The reason for this difference in elatrainment

rate can be given by considering the momenttun etluation tn the x-direc-

t ion

uu + vu - Ut + u _/Re _.3_
x y xx v.v
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Denoting the velocity difference u1 as

-- U - UU1 ®

and substituting into equation (6.3) yields
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(6.4)

1
(u - u 1) (u - Ul) x + v(u - Ul)y = _-_ [(U-Ul)yy + (U-Ul)xx)] (6.S)

Since u is a constant (i.e., u * 1), the above equation on simplifi-

cation becomea

1 (6°6)
U®Ulx - UlUlx + VUly = (VUlyy + Ulx x) _-_ ,

U_Ulx ul)ry/Re = UlUlx - vUly + Ulxx/Re .

The equation used by Tollmein was

U Ulx - Ulyy/Re = 0 . (6.7)

So the terms on the right hand side of equation (6.6) are not present

in equation (6.7). The effect of these terms can be neglected only

when u and its gradient are small and when x > 3L. Therefore, the
Y

difference between the present calculation based on the full Navier-

Stokes equations and Tollmein's calculation based on equation (6.7)

create the difference in the entrainment rate. This difference mani-

fests in the different speed of recovery of the velocity defect particu-

larly in the near wake region. It should be noted that since Tollmeins'

approximation and entrainment prediction in the near wake region are

not valid, the result at far wake region, even though profile is approxi-

mately correct, requires a shift in the origin of the trailing edge to

account for the defect in the entrainment rate.
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The results for Re-- 800 are shown in fig. (6.4). These results

seem to have better similarity with the Blasius solution at the trailing

edge and with other existing solutions at a distance x > 3L. However

the difference is still appreciable. Again, the use of equation (6.7)

by Tollmein in calculating is one of the reasons. Further, Tollmain's

results were obtained, with very large Reynolds numbers which should be

in the order of 104 to 106. Hence, the reasons for the discrepancy be-

tween this result and other results are the same as those discussed for

Re = 400.

6.3 Discussion o£ Near Wake Solution

Regarding other previous near-wake solution, Goldstein [8] in 1930

first calculated the flow downstream of the trailing edge of a thin flat

plate at zero incidence. He used the boundary layer equations assuming

that the ReTnolds number is very large. Hence he appropriately took the

B1asius profile as the boundary condition at the trailing _dge. However,

Goldstein [8] solved the boundary layer equation in the wake with a

series solution for the velocity profile by expanding the series from the

trailing edge. The solution is thus valid only for small distances from

the trailing edge. As the distance from the axis increases the result

becomes _naccurate. Further, Goldstein's solution has an algebraic singu-

larity at the trailing edge of the plate. Like Tollmein's result, his

result is also valid only for large Re. Fig. 6.5 shows Goldstein's re-

sult as compared to the present result for Re = 400 and 800 in figs. (6.2)

and (6.4) in the near wake of a flat plate. Goldstein's axial velocity

at x - 0.2L is 0.43 as compared to 0.45 for Re = 800 in the present study.
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Since the result obtained by Goldstein in fig. (6.5) is from the

boundary layer equation, which is parabolic, there is no mechanism in his

analysis by which the wake solution behind the trailing edge can b_ com-

municated to the flow upstream of the plate. This is true only for

large Reynolds number and the flow is governed by boundary layer equation.

However, it was pointed out by Plotkin and Flugge-Lotz [6] that no mat=

ter how high the Reynolds number, there must exist a 7_gion near the

trailing edge in which the boundary layer assumptions are not valid, and

the full Navier Stokes equations must be used. In short, the present

calculation differs from Goldste_n's calculation in that the Reynolds

ntnnbeIsare 400 and 800 instead of large Reynolds numbers and that the

full Navier-Stokes equations are used instead of boundary layer equation.

These are possibly the reasons for the difference between Goldstein's

results in fig. (6.5) and the present re_ tit for Re = 400 and 800.

Fig. (6.6) also compares the present calculation with Goldstein's

result for the axial velocity for x ranging from 0 to 0.6. The chain-

dot line obtained by the present method for Re = I00, 400 and 800 are

shown in the same figure. The axial velocity obtained by Goldstein is

slightly less. This difference is probably because his calculation was

not based on the full Navier Stokes equations.

Plotkin and Flugge-Lotz [6] had solved by finite difference method

the flow over d finite plate and wake. They divided the region into two

parts. In the region closer to the trailing edge they calculated the

full Navier-Stokes equations and in the other region far downstream, they

used the boundary layer equations. Unfortunately, they too, like others,
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solved for Re greater than 105. They mentioned that the trailing edge

disturbance necessitates solving the complete Navier-Stokes equation

in the trailing edge region even at high Re. This implies that the flow

variation in both x and y directions is important even for large values

of Re. Their result is shown in fig. (6.7) which is again slightly

different from the present result, the main reason being the large dif-

ference in Reynolds numbers.

The behaviour of the velocity profiles at Re = 100 is shown in

fig. [6.8). These profiles are markedly different from those obtained

by boundary layer equation. It should be mentioned that even though

the flow is laminar over the flat plate for large Re, the flow may

quickly become turbulent once it leaves the trailing edge of the plate.

This is because the velocity profile in the wake has an inflection point,

which according to Rayleigh inflection point theorem [9] of stability

analysis could become unstable in the wake region. Therefore, the

laminar solution in the near wake region for moderate Reynolds numbers

is really of practical interests.

6.4 Conclusion

The flow over a finite flat plate investigated in the past is

mainly for large Reynolds numbers. However, the same flow at moderate

Reynolds numbers has given difficulty to investigators over the past

few years. The main problem was that the full Navier-Stokes equations

must be used. Therefore little was known about the plate-wake inter-

action. In most of the previous investigations the B1asius solution or

boundary layer solutions has been used as a bowldary condition at the
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trailing edge. Further, a boundary layer equation is used in the wake

region. However, if the plate is finite and Reynolds number is moderate,

the wake-flow may interact with the viscous flow over the plate. So the

81aslus solution can no longer be assumed as the boundary condition for

the wake region. In the present method, no such assumptions are made and

the full Navier-Stokes equations are solved with the correct boundary

conditions imposed on the leading edge rather than the trailing edge of

the plate.

B
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The algebraic 9 point formulae dert.ved under the FA method given

in Chapter 3 were verified tn Chapter 5 for their accuracy, These FA

formulae were combined to form a numerical method of computation and

used to solve the problem of flow over a finite flat plate in Chapter

6. Results for moderate Reynolds numbers were obtained and compared

with the existing results for high Reynolds number with boundary layer

assumption. Fairly accurate results are obtained from the present FA

numerical solution of Navier-Stokes equation for primitive variable. How-

ever, the momentum averaging lterative scheme has not been rigorously

tested as the flow over the finite plate is .Llways dominated by the x-

direction mementum. One, thus, may still have some doubt that the vali-

dity of the momentt_a averaging iterative scheme. In this chapter the pr,_b-

lem of flow in a driven cavity is solved by the proposed momentum avera-

ging scheme and the F_ averaging method. One. therefore, expects that

in solving the cavity flow, the momenttm_ averaging ttcrattxe scheme t+

p_Jt on a rigorotLs test as the flow field of the problt, m contain._ rt, cxr

culation +rod separation and the dominant momentum c,_mponent> r_H_idly

shift from one finite clement to the other xn the flow t'xvld. Further-

more, the solution can he compared wLth results obtained by many other

investigators [2,3,4 I.
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Fig. (7.1) shows a cavity in which the fluid is driven by a plate

AB moving at a velocity u = I from left to right. The calculations

are done for Re - I00, 400 and 800. The boundary conditions for u and

v on all the sides are zero except for the plate AB where u - I. The

pressure boundary condition cannot be specified exactly and so a Taylor

series expansion of pressure about the four walls to their immediate

interior neighboring nodes is carried out. Details of the derivation of

the pressure boundary condition aregiven in Chapter 4. The choice of

the grid size is based on the Reynolds number as is discussed iJ! Chapter

6. In short, higher the Reynolds number, the finer is the grid. For

Re = 100, the grid size (h) is 0.025 in both directions..For Re = 400,

it is also 0.025, and for Re = 800, it is 0.0167.

7.1 Velocity Distribution

In fig. (7.2), the u-velocity profiles along a vertical line

through the geometric center of the cavity are shown. The profiles are

for Re - lO0, 400 and 800. It is seen that at Re = 100, the velocity

curve is smooth showing that the diffusion of viscous effects pm_etrates

throughout the cavity but for larger Re the velocity gradient t1_ most

part of the cavity is constant and the boundary layer-like velocit,

profile is seen such that near the top and bottom sides of the cavity.

the velocity gradient is very steep. This accounts for the fact that

the shear stress of the skin friction is large for high Re,molds numbers.

The maximtun negative velocity increases and ._htfts toward the top sur-

face of the cavity. For Re = 400, the maximum negative velocttv is

about 0.28 and for Re -- Hot) it is abot.t i),,t(), l'he result ._btained
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Re = 800

Re = 400

Re = I00

Figure 7.2 Velocity Profiles along a Vertical Line through the
Geometric Center for Re = 100, 400 and 8()t)
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by Chen and Naseri and Li [2] from vorticity-stream function formulation

is shown in fig. (7.3). The _wo results _re fairly the same. The fact

that the two results agree with each other and that Chen et al's FA

numerical solution does not utilize momentum averaging idea shows that the

averaging iterative scheme is valid in this problem where the dominant

momentum shifts widely from an element to an element.

It is obvious that, as the Re._nolds number increases, a greater

number of iterations are required for the convergence of the results.

For Re t I00, the Poisson equation needed i0 internal iterations for

convergence to 10-4 whereas the momentum equation needed 20 interval

iterations to converge to I0"3. For the combined solution of u, v,

p to converge and stabilize , 25 overan iterations were given. For

the case of Re - 400, the Poisson equation required 15 interval

iterations, the momentum equation required 2S internal iterations and

the numerical scheme required about 35 overall iterations for conver-

gence. For Re • 800, the ntmber of internal iterations for Poisson

equation was about 20 and for momentum equation it was about 40. Over-

all, 45 iterations were needed for convergence. It was noted during

these calculations that the number of internal iterations required for

momentum equation to converge had a relation with the ,Rrid size. Indeed,

the number of interval iterations needed was fottnd to be in proportion

to the number of grid points in a column, l'his is so since in the Gauss-

Seidal iterative method one can expect that the sttbst:n_tiat improve-

ment in the nodal wilues in the first internal iteration will be con-

fined to the first few rows. Therefore, it seems that, if there are

40 nodes in a column, then probably 40 iterations are required to obtai_
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a good numerical solution. The quantitative values for typical nodes in

the cavity for various Reymolds numbers are given in Table 7.1.

7.2 Streamline Pattern

Since the velocity distribution alone does not give a good idea of

the flow pattern in the cavity, the stream function was computed from the

velocity distribution_ This is done by solving the equation

Pxx + _yy (Uy vx)
(7.l)

Equation (7.I) is essentially a Poisson equation and is identical to

the Poisson equation for pressure (3.4) in Chapter 3. Since the

FA solution of Poisson equation is already given in equation (3.2S),

equation (7.I) is readil_ solved if the vorticity (uy-v x) is computed

from the known FA solution of u, v by difference approximation. Fig.

(7.4) gives the stream function contours for Re = i00. The contours

for Re = 400 and Re = 800 are given in figs. (7.S) and (?.6). The

stream function at the center of the vortex has a maximum value of O. ll)

which compares fairly well with the result of 0.I01. The streamlines

for Re = I00 given in reference [2] are shown in fig. _7.7).

It is noted that the separation at the two top corners are predicted from

the present FA method for primitive valuables.

7.3 Pressure Distribution and Force i_alance

Fig. (7.8] gives a plot of i'__obars _n the cavity for i,'e : 100 and
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Comparison of Velocity
Chen et al.

Table 7.1

at Various Points with that of

Location u-velocity at different Reynolds
Numbers

X

[21
Y

i0o

Present

400

Present

0.5 0.7 -0.14 -0.15 -0.27

0.5 0.8 -0.09 -0.10 -0.27 -0.27

0.5 0.9 -O.OS -0.04 -0.18 -0.18

-0.18

-0.20

-0.190.5

-O.1O

-0.20

-0.27

0.5

0.6

O.S -0.21

0.5 0.I 0.40 0.42 0.30

0.5 0.2 0.09 0.ii 0.20 0.16

0.5 0.3 -0.08 -O.OS O. 11 0.05

0.5 0.4 -0.18 -O.IS 0.00 -0.04
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41 x 41 grid. The result is quite accurate, rhis result is quite simi-

lar to that in fig. (7.9) as obtained by Burggraf i4]. Another check for

the pressure in the cavity was made by making a force balance. That is,

the full cavity was taken as a control volume and the pressure force and

_iscou$ shear force in the x-direction and _n the y-direction were

separately ad_ied and it was found that they are very small. In the x-

-3
direction the net force in dimensionless units is of the order lO and

in the y-direction it is 10 -4, That is, the force b,_lance is good upto

the third decimal point. This is obtained for all the three different

Re)'nolds numbers. Fig. (7.10) gives the pressure distribution for

Re ,, 400. Comparison of f_g. (7.8) and ftg. L7.10) shows that as the

Reynolds number increases from 100 to 400 the pressure difference between

the two corners at the bottom increases from _p - 25 to _p -- SS. It is

interesting to see that the pressure difference between the vortex center

and the downstream cocner is also the same for the Reynolds ntumbers

considered.

From the above discussion of the FA sotuti, on for flow in closed

square cavity by momentum averaging scheme it may be concluded tidal

the FA solution and the nlomenttma averaging scheme to work very well

in predicting the complex recirculattng flow.
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8.1 Conclusion

Although the Finite Analytic Method is still in its developmental

stage, it has already demonstrated the advantage of invoking the local

analytic solution of partial differential equation in constructing the

numerical solution of linear or nonlinear partial differential equations.

Chen and Li [I] and Chen and Naseri and Li [2] who initiated the develop-

ment of the Finite Analytic method, have reported a great success in

using this method for solving Navier-Stokes equations with the vorticity-

stream function formulation. The Finite Analytic solution for Laplace

equation [I], non-linear ordinary differential equation [I0] and

Poisson equation [II] have also been investigated. _rom these investi-

gations it is seen that the FA method is accurate and has smaller numeri-

cal diffusion than the other numerical methods. Further, it converges

well and is stable.

It was, therefore, with this belief that an FA solution of Navier-

Stokes equations in primitive variables was considered in this study.

Since the comparison of the FA method with other methods has been discus-

sed in details by Cnen and Naseri and Li [2], no attempt was made to

compare the results of the FA method with other methods. In this study,

a new numerical procedure called the momentum averaging s_hcme wab

developed to accelerate the convergence of numerical solution fox" the
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Navier Stokes equations formulated in u-v-p variables.

In this study, the Navier-Stokes equations are considered as a whole

in a local element. The only approximation made in the equations is the

local linearization. On each side of the element, the boundary condition

is approximately represented by a second degree polynomial. From the

first problem in Chapter 6, which considers the plate wake interaction,

it was found that at moderate values of Reynolds numbers, i.e., I00, 400,

and 800, the Navier-Stokes equations should be considered in order to sim-

ulate the interaction between the wake flow and boundary layer over the

plate and to obtain correct solution from near wake to far wake regions.

In the second problem, the FA solution of thr Navier-Stokes equa-

tions and the developed momentum averaging scheme are vigorously tested.

They are used to solve for the closed square cavity flow where recircula-

tion, separation and steep velocity gradients all exist. The numerical

solution predicted hy the present FA method compares favorably with the

existing results.

From the present investigation it may be concluded that the FA nu-

merical solution of the Navier-Stokes equations with the proposed momen-

tum averaging scheme is accurate, stable and converges well. The method

developed here for the two dimens2onal Navier-Stokes equations can be

easily extended to the three dimensional case. It is, therefore, hoped

that this study will pave the way for future lnvestlgations of the FA

solution for three dimensional Navier-Stokes equations.
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8.2 Recommendation

During this study, a number of difficulties arose in obtaining solu-

tions and some critical decisions were made in order to get the final

solutions. In this process a number of ideas were uncovered which are

likely to improve the FA method. For example, as mentioned earlier, the

grid size used in this method for solving Navier-Stokes equations depends

on the Re)_olds numbers. In order to bring the effect of the boundary

layer in the flow field, at least one node was needed inside the boun-

dary layer. This required that the grid size be very fine thereby in-

creasing the computational time by a large amount. In order to

reduce the computational time, the FA method needs to be developed to

take nonuniform grid size so that in the boundary layer, the grid can

be made as fine as required, and still maintaining a coarse grid out-

side the boundary layer.

Another way in which the FA solution technique can be improved is

by obtaining an analytic solution which has simpler series solution

than that obtained in Chapter 3. In Chapter 4, it was mentioned that

before calculating the velocity from the momentum equation, the coef-

ficients corresponding to the values of A and B are calculated frown a

subroutine for each element. Since the calculation of the coefficients

involve series summation, a lot of computational time is needed by the

FA method. To reduce this computation_ time, a new technique of obtain-

ing the analytic solutions could be conceived. For example, the approxi-

mate function for the boundary condition need not be a seco_d degree

polynomial. Instead) it could be a linear combination of funct£ous that

s_tisfy the governing equation. This could Icad to lesser comp,ltutional

time and better solutions.
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APPENDIX A

COMPLETE FA SOLUTION OF POISSON EQUATION

In chapter III, the solutions to Poisson equation, momentum

equation and continuity equation were simply written down. The solu-

tion to Poisson equations is obtained here in this Appendix. The

other two equations are solved in Appendices B and C.

Before solving the equation here, an outline of the solution pro-

cedure is discussed briefly. The problem is divided into three simpler

problems. Each of these problems is solved separately and the solu-

tions are then added to obtain a solution of the Pojsson equation.

The equation under consideration is

91

V2p = 2(UxVy - VxyU)

with all four nonhomogeneous boundary conditions. The three simpler

problems are:

(i)

(ii)

(iii)

V2pla = 0 with homogeneous boundary conditions at y = +_ k.

_?2plb = 0 with homogeneous boundary conditions at x = + h.

V2p2 = 2(UxV - v u.) with homogeneous boundary conditions at
y xy

x = + h and y --+ k.

Having solved these three problems, the solution to the Poisson equation

is written as
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P = Pla + Plb + P2 "

The equation to be solved is

V2p I = 0
a * (3.23)

and the boundary conditions are

Pla = PE (y) at x = h ,

Pla = PW(y) at x = -h,

Pla = 0 at y = _ k .

The above equation is solved using separation of variables.

variable Pla is assumed to be a product of two functions, i.e.,

The

Pla(X,y) = X(x) Y(y). (A.I)

This is substituted in equation (3.23)and the resulting equation di-

vided by Pla(X,y). This gives

Xlt yf!

4" _ ---- 0

, (A.2)X Y

or
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(A. 3"}

Since the boundary conditions on the north and south side are zero,

the + sign is taken in equation (A.Z). This leads to two equations

Xt' = _2K = 0 (A.4}

and

y"+ tJ2 y= 0 • (A.S)

Equation (A.4} has a solution of the form

X{x) = CiSinhux + C2Cosh _x , (A .6)

and equation (A.S) has a solution of the form

Y(y) = DlSinuy ÷ D2Cosuy . (A.7)

Therefore,

pla(X,y} = (ClSinhux + CzCOSh_x )(DISinuy + O2Cosuy ). (A.8)

The boundary condition at y = -k is now substituted in (A.8)

L-.
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Pla " 0 -" (C I Sinhux + C,. Cosh_x)(-O I Sin uk + D2
Cos l,k_

Cos !ak
DI - D_ S--_

Replacing D I in (A.8), Pla (x,y) becomes

D_SLn_(y+k)

Pla(X,y) - (C l SLnh_x + C,. Cosh_lx) Sin _lk

or

s_n_____,Cvtk_.
Pla(X,y) - (C 1 Sinhux + C,. Cosh_lx) Sin _k

(h.9)

where the constant D, is absorbed in C 1 and C,..

O. Therefore

NOW, ;.it" %" = k, ?l;I

and

Therefore, Pla(X,y) n_l [CI
(A. 101
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The boundary condition at x = h is now substituted in equation

(k.lO). This gives

= = + Cosh _nh] *Pla(X,Y) PE(Y} nZ=l [ClnSinh Unh C2n

Sin _n(Y+k)

Sin _nk
(A.II)

2
But pE(y) = aE + bEY + CEY .

Multiplying both sides of equation (A.II) by Sin um(Y+k) and

integrating with respect to y, the following relation is obtained

k k

aE S Sin Pm(Y*k)dy + bE f y Sin _m(Y+k)dy
-k -k

k

+ cE S y2 Sin Um(Y+k)dy =
-k

k

n_'l ' h + Cosh pnh] f Sin p
= tC]nSinh Vii C2n -k n

(y+k)*

Sin Um(Y+k)dy . (A. 12)

Noting the orthogona] relation on the right side the above equation

reduces to

k k

aE S Sin Un(Y,k)dy + bE f y Sin Un(Y+k)dy +
-k -k

CE Sk.ky2Sin Un(Y*k)d>" = [C_Sinh Unh ÷ C_Cosh _nh]
k

(A.I_}
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Sin _nk

[aEE 1 + bEE 2 + CEE3] = ClnSinh Unh + C2nCOSh _n h (A.14)

where

I [1 - (-i)n] ,
Sin Vn(Y+k)dy = _n

k [i + (-1) n]
Sin Vn(Y+k)dy = - -_

k

2 (2k2 - _ [I
E3 = Sk-Y2Sin Un(Y+k)dy - _-_ Un2

- (_l)n].

Similarly, using the boundary condition at x = - h, a relation is ob-

rained which is

Sin Unk

k [aWEl + bwE2 + CwE3] = " ClnSinh Unh + C2nC°Sh Unh " (A.I5)

Clnand C2nare now obtained from equations (A.14) and (A.15) so

Sin u k
n

Cln = 2k Cosh Vnh [aE - aw) E1 ÷ CbE - bw) E2 ÷ (cg cw)E 3] ,

and

Sin Unk
C2n= 2k Cosh v h [(aE + aw)E1 + (bE + bw)E2 + (cE + Cw)E3]'

n
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Pla(X,y ) = n_l [ClnSinh _n x + C2nCOSh UnX ) Sin Vn(Y+k),
(A. 16)

where

I 4- ÷ "

Cln= 2k Sinh unh [(aE " _)E1 (b E . bN)E 2 (c E cw)E3] ' (A. IT)

and

1 + + ÷ + (A.I8)
C2n-=- 2k Cosh unh [(aE aw)E1 (bE + bw)E2 (CE Cw)E3]"

Solution to EAuation {3.24)

The equation to be solved is

V2plb = 0 ,

(_.24)

and the boundary conditions are

=Oat x= ÷ h
Plb - '

Plb = PN (x) at y = k ,

Ptb = PS (x} at y - -k .
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The solution to this equation is exactly similar to (A.16).

So the solution can be written by simply replacing x, y, h, k and un by

y, x, k, h and vm. Therefore,

Plb(X,y) = m_=1 [C3mSi_h Vmy + C4mCOSh _my ] Slnvm(x + h), (A.19)

where

I
C3m-- 2h Sinh _ k [(aN-aS) F1 + (bN-bs) F2 + (CN - cs) F3] '

m

(A.20)

and

I
C4m = 2h Coshv k [(aN÷aS)FI + (bN+bs)F2 ÷ (CN*Cs)F3]"

m

(A.21)

FI, F2 and F3 in equations (A.20) and (A.21) are given by

h
i

[i (-i)m] ,FI = f Sin _m(X+h)dx = _--
-h m

h

F2 = f x Sinum(X+h)__dx = - _h_ [, + (_l)m],
-h _m

h

F3=f
-h

x2 Sin _ (x+h)dx = 2 (2h 2 Im _ - _--_)[i _ (-tm] .

where

m_
• m= 1,2

_Jm '_ J ....

LA ....
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The equation to be solved is
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V2p2 = 2(UxV (3.21)y - VxUy) ,

and the boundary conditions are

P2 = 0 at x = +h__

P2 = 0 at y = _+k-

This equation is solved by expressing the nonhomogeneous term as

a second degree polynomial. The term 2(UxVy - VxUy) is simply assumed

to be a function of x and y. So

_2p2 = f(x,y), (A.22)

where

f(x,y) = a0
2 2 2 2

÷ alx + a2Y * a3xY + a4x + aSY + at x Y

2 2
÷ a7xY + a8x y . (A.23_

These 9 coefficients can be written in terms of the nodal values of

f(x,y). As an example
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f(o,o) = fp = ao ,

f(-h,O) = fWC ffiao " alh ÷ a4h2,

From these three equations, a aI and a4 are obtained.O'
In this way,

all the nine coefficients can be expressed in terms of the nodal values

of f(x,y). So

a 0 ffi fp

1
al = 2-h (fEC " fwc )

1
a2 = _ (fNC - fsc )

1 - fNW + fSW)a3 = 4-hk CfNE - fSE

1 - 2f + fwc )
a4 = --2h2 (fEC p

1 - 2f + fsc )
as = _ (fNC p ,

a6 • 1 (fNE fsE + fNW ÷ fSW " 2fEC - 2fwc " 2fNC - 2fsc + 4fp)
4h2k 2 +

I
a7 • _ (fNE + fSE - fNW " fSW

4hk 2 •
2f__ + 2fwc}EC
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a8 = _ (fNE

4h2k ÷ fNW - fSE - fsw + 2fsc- 2fNC)"
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The function f(x,y) is now represented by a Fourier series, i.e.,

am

fCx,y) = n__l DnCY) Sin _nCX + h), (A.24}

_ nl;

where _n 2h' n = 1,2 ....

Multiplying equation (A.24) by Sin _(_ + h) and integrating with

respect to x, the following relation is obtained.

h h

j" f(x,y) Sin _.m(X + h) dx - _1 D (y) f
-h n n -h

Sin X m(X + h) Sin

(x + h)dx. (A.25)

Due to orthogonality of the sine function, the above equation reduces to

h

On()') h -- [
-h

f(x,y) Sin kn(x÷h)dx

h

a5 y2)= (a 0 + a2Y + [j Sin _ (n ÷ h)dx
-h n

h

÷ (a I ¢ a3Y + a7 y2) f x Sin _, (x * h)dx
-h n

h

* (a 4 ÷ aSY * a6y2) f x 2 Sin _ (x * h)dx.
-.h n
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Dn(Y) h = (a 0 + a2Y + a5 y2) G1

+ (a 1 * a3Y + a7 y2) G2

* (a 4 + a8Y + a6Y 2) G3 •

where

h

Gl=f
-h

1 [1 {-I)n]
Sin _nCX + h) dx = _-"

n

h

G2= f
-h

x Sin X (x + h) dx = - h [1 + {-1) n] ,

So )

and

h

G3=f
-h

Dn(Y) =

2
x 2 Sin Xn(x * h) dx = _-- (Zh 2 - -'_')[1

n ]Jn

(-1)n].

_ [{aoO I * alG 2 + a4G 3} * (a2G I * a3G 2 * asG3}Y

+ (asG 1 + a7G 2 + a6G3)y2 ] , (A. 26")

f(x,y) = n_=l Dn(Y) Sin Vn(X + h'} ,
(A.24)

It is now assumed that P2(x,y) is also of the form

• = = (x + h} (A.27)P2 (x'y) n_l Bn(Y) Sin v n
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Substituting equations {A.24) and (A.27) in the governing equation, i.e,

equation (3.21), the following equation is obtained

a2Bn (y) 2

@y2 - kn Bn(Y) = Dn(Y)
{A.28)

This is a non-homogeneous second order differential equation in B {y).
n

The solutfon consists of two parts, namely complementary solution and

particular integral. Now,

^ ^ ^ 2

Dn{Y} = a0 + alY + a2Y {A.29}

where

" 1
a0 = _ (a0G1 + alG 2 + a4G 3)

^ 1
a I = _- (a2G 1 + a3G 2 + a8G 3}

1
a 2 = _ (asG1 + aTG 2 + a6G 3}

Since D (y) is a second degree polynomial in y, the particular solution
n

of Bn(Y) is also assumed to be a second degree polynomial in v. Thus

2
an(Y) I = C7 + %y ÷C9Y (A.30)

P

Equations (A.29} and (A.30) are sLtbstituted in (A,28_ to give
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2C9 kn 2 C9y2) = ao ^ 2(C 7 + C8Y + + alY + a2Y
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From this, C7, C8 and'C 9 are evaluated.

C7 -

_

^ A

a0 2a 2

k2 k 4 '
n n

^

a 1

k2"
n

a 2
2 "

k
n

So

The complementary solution of B (y) is
n

,kny -knY
Bn(Y) = Ale + Ble •

Hence the complete solution to equation (A.28) is

Sn(Y) = Ale

ky 2
n -knY + 9 + C8v + C9Y+ Ble . , (A.31)

where

C7 =
1 2C

aoG I alG 2 a4G 3k2h ( + + ) + 9
n X _

n

C8
1

k 2 (a2Gl ÷ a3G2 ÷ a8G 3) ,
n g

C ffi l

9 k 2---_(asG1 ÷ a7G2 ÷ asG3) •
n

(A.32)



-!

?'!
t

Vt

The constants A1

Bn(Y ) = 0 at y = + k.

and B1

lOS

are evaluated from the boundary conditions

Therefore,

and

xnk - Ank

Ale + Ble + C 7 , C8k + C9k2 = 0

Ale + Ble + C 7 -C8 k +C9 k2 = O.

From these two equations A1 and B1 are found to be

and

k Cosh k k

Sinh )n n - C 9k2A1 = - C7 Sinh iX k'-C8k Sinh 2A k
n n

k

SinhXn k Cosh An -C9k 2
B1 = - C7 Sinh 2Ak + C8k Sinh 2X k

n n

Sinh k k
n

Sinh 2k
n

Sinh I k
II

Sinh 21 k
n

Finally, the solution for P2[x,y) is obtained as

P2(X,y) = n_ 1 [CsnSinh Any + C 6Cosh Iny + C7 + C 8y + C9y21

Sin Xn(X + h),
(A.33)

where

C

and

Csk

C 7 + C 9k2

C6n-- Cosh _Ank)

Sn- Sinh (A k)
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The three solutions obtained above are now summed to give the

final solution to Poisson equation. Thus

pCx,y) = Pla + Plb + P2 '

and che value of p at the interior node p is

Pp = cNEPNE + CEcPEc + CsEPsE + CNcPNc + CscPsc

+ cNwPNw + CWCPWC + CswPsw + CNE'fNE + cEC'fEc

tf ÷ t + t

+ cSE'fSE + cNC'fNC + Cp P CSC fSC cNW fNW

+ Cwc'fwc + Csw'fsw .

The coefficients are given below.

2 16

CNE = cSE = cNw = CSW = m=1,3 m _ 3 3
mw

S = 0.04468S

m

oo

E 16

CEC = cNC = CWC = CSC = m=l,3 3----_Sm
= 0.205315

where

Sin(re./2)
S =
m Cosh (m_/2)



r_

! ! !

CNE = cSE = CNW = Csw'

POORQUaLZ 
1U7

= 0.001895h 2 •

= h2 _ 8 64 64 8Sin(_/2) ]
cNC' = CSC' [re=l,3 {Qm (2"_''2" + -_) - _} 3 3

m ,_ m _. m_ m,_

= 0.01855h 2 .

Oo

, , : h2[m,g {Q.m( 64 8 64, 44 (44
cEC : Cwc i 3 m Tr m _ m

8Sin(m_/2)

..__q.L__mZ_"} m_ 3 ]

9

: 0.01855h",

' = h2 [m=°° --T'4;128" _16 . 128.) }8Sin(nm'/2)m4_'4¢p _,3 {Q'm(- - ( m4 4 '"]
m "IT

: 0.21289h 2 .

Cosh(m_/2)

and h : k.
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APPENDIXB

COMPLETE FA SOLUTION OF HOHENTUMEQUATION

In section 3.3, the momentum equation was divided into three parts

in order to obtain the analytical solution conveniently. In this Ap-

pendix, the solution to each of these three parts is obtained separately.

The discussion of section 3.3 is briefly reviewed here. The three

problems to be solved are

Problem {1): Homogeneous equation (3.42) with two homogeneous

boundary conditions.

Problem (23: Homogeneous equation (3.43) with other two homogeneous

boundary conditions.

Problem (3): Non-homogeneous equation (3.44) with homogeneous

boundary conditions.

The three solutions obtained from these three problems are then summed

to give the final solution of the momentum equation.

Solution to equation (3.37)

The equation to be solved is

(A2 + B2)fi = Ulxx + Ulyy' (3.371

along with the boundary conditions



_l(h,y ) = (aE + bEY + cEy2)e-(Ah + By)

fil(-h,y) = (aW + bwY + Cwy2)e

_l(x,k) = O,

_l(X,-k) = 0 .

CAb - By) ,

Since the boundary conditions on the northern and southern sides

are homogeneous, the solution can be assumed to be of the form

I09

n

Ul(X,y) = n_iAn(X) Sin _ (y + k)n

where

=n_
n 2-_' n = 1,2,... ,

(B.I)

and A(x) is a function to be obtained. Equation (B.1) is now sub-

stituted in equation (3.27) to give

n_1A_(x)Sin %n(y ÷ k) - n_l _2n An(X) Sin _nCy + k)

- (A2 + B2) n_iAn(X) Sin _n(y + k) = 0 , (B.2)

or

A (x)

or

A"(x)
n

where

(A2 B2 2)+ + _ = 0n An(X)

qn2A (x) = 0 ,n
[B .3)

2 A2 B2 2
qn = + + _n
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Equation (B.3) is a second order, homogeneous, ordinary differential

equation which has a solution of the form

110

An(X) = C Sinh(qnX ) + C2nCOSh(qnX)n (B.4)

The constants Cln and C2n are evaluated from the boundary conditions at

x = + h. At x = h,
m

Gl(h,y ) = (aE + bEY + cEy2)e-(Ah + By)

= n_l An(h)Sin kn(Y + k). (B.S)

Multiplying both sides by Sin km(y + k) and integrating with respect

to y results in

k

f (aE + bEY + cEy2)e-(Ah + By) Sin _ (y + k)
m

-k

k

: n=_l An(h) f Sin kn(y + k)Sin _ (y ÷ k) dy
-k m

Due to orthogonality of the Sine function, the above equation reduces

to

or

k

An(h) : kl f (a E . + cEy2)e_(A h + BY)s i-k bEY . n k (y , k) dyn

-Ah
e

An(h) =

where

[aE£ 1 + bE£ 2 + cE£3] ' qB.6)
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h

=f
-h

e -By Sin >,n(y . k)dy =

h

E2 " _ ye "BY Sin X (y + k) dy
-h n

Bk n -2Bk
e X [1 - (-1) e

n

(B2 + X 2)
n

Bk n_{-l)ne "2Bk (2B
] + B2 2= e ([- B2 + ), 2 + X

n n

h

E3 = )" y2e-BYsin _n (y + k)dy
-h

k) [I-(-z)ne-2Bk
- ]_n },

B2 , _ 2
n

Bk n_k(-l)ne -2Bk
= e (-

(B 2 + _, 2)
n

2kn n( - 1) ne- 2Bk

(B2 + _,2)
n

4Sn n(- 1) ne- 2Bk

(B 2 + _.2) 2
n

2(3B 2 _ ), 2)

÷ [ n

(B2 + ), 2)
n

[l_(.1)ne -2Bk

, 2) ] x}(B2 + X n
n

4Bk + k2].
(B 2 + k 2

n

Similarly, at x = -h,

Ah

e + bw__ + -An(-h) = T (awEI 2 cwE3)" (B.7)

Returning to equation (B.4), the constants Cln and C2n are now evaluated

from An(X ) at x = * h. So

An(h) = ClnSinh(qnh ) + C2nCOSh(qnh) ,

A (-h) = -ClnSinh(qnh ) + C2nCOshfqnh )n



From these two equations
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C
In

An(h) - An(-h )

2Sinh(qnh)
(B.8)

and

An{h) + An(-h)

C2n = -2Sinh(qnh) ('B.9)

Therefore,

Ul (X,y) = n_l(ClnSinh(qn h) + C2nCOSh(qnh)}Sin X (y + k)
n

(B.IO)

where Cln and C2n are given by equations (B.8) and (B.9).

Solution to equation (3.38)

The equation to be solved is

(A2 + B2) u2 = U2xx + U2yy ' (3.38)

and the boundary conditions are

G2(h,y) = 0 ,

G2(-h,y) = O,

_2(x,k ) = (aN . bN x . cNx2)e-(Ax + Bk)

G2(x,_k) = (aS + bs x + CsX2)e-(Ax Bk)
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The solution to this equatior, is exactly similar to (B.IO). So

the solution can be written by simply replacing x, y h k, A B

and qm Thereforequ 0y y, x, k, h, B, A, Vm

= ® (x ÷ h) ,u2 (x'y) m_l {ClmSinh(qm y) ÷ C2mC°sh(qm y}}sin _m

where

Bm(k) - Bm(-k)

Clm = 2Sinh(qmk)'

C2m =
Bm(k) + Bm{-k)

2Cosh(qmk)

(S.ll)

113

and

' (B.12)

(B.13)

Bm(k) and Bm(-k) in the above equations are given by

-Bk

e - bN_2 - {B.14)Bm(k) = _ (aNFI + + CNF 3) ,

Bk

Bm(.k) = _e (aS_l + bSF2 ÷ csF3) " (B.IS)

FI' F2 and F3 in equations (B.14) and (B.IS), are, in turn, given by

h -Ax eAhPm[1 - (-l)me "2Ah]

FI = [ e Sin _m(X + h)dx =
-h CA2 + _m_)

h
-Ax

r_2- f _e
-h

Sin UmCX + h)dx

Bk m _{-I) me" 2Ah 2A

- e {[- r 2 ]" (A2tA2 + tJ + U
2

m m

h

F3 2 -A [x , h)dx= f x e '%in _m
-h

2Ah
-I)me

h) [l-( 2 ] m } ,
A" + U

m
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= eAh (. mvh(-t)me -2Ah

(A2 + _ 2)
m

4Amv(-t)me -2Ah 2hm_(.t)me -2Ah

(A2 + _ 2)2 + (A2 + p 2)
m m

2C3A 2 - )J 2)

, [ CA2 _) 4Ah+ U 2 " (A2 + _ 2)
m m

2 = A2 B2 2
qlu ÷ ÷ _

Ill'IT,=-- m=12Um 2h' ' ' ....

+ h2] [1-(-l)ae -2Ah]

(A 2 + urn2) _m}

Solution to equation (3.39}

The equation to be solved £s

(A2 + B2)u3 = U3xx + - Re Px e-{Ax + By)U3yy" (3.39)

and the boundary conditions are

u 3(h,y) = o ,

u3(-h,y) = o ,

_3(x,k} = 0 ,

_3(x"k) = 0 .

Let g(x,y) = Re Px e-(Ax ÷ By) = E_I CE(y) Sin vE(x ÷ h)

Multiplying both sides by Sin u (x ÷ h) and integrating gives
m

h

{Re px} f
-h

e-(Ax ÷ By) Sin
vt(x + L) dx = Ct(y )(h)
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llS

C (y) -
Re Px h

h e-By ; e"Ax Sin
-h

Re Px= I e-By
h

where
h

I=f e

-h
Sin _ 2.(x + h)dx

- v £e'A'h(-l)_

A2+V 2

%(X + h)dx

Assuming G3 of the fore

G3 "-'_I Y_(Y) Sin v£(x + h) ,

g(x,y) and u3 are substituted in equation (3.39). This gives

B2)y£ (y) _ 2E(A 2 + Sin v£(x ÷ h) = £ 1 (- v£)YE(y)Sinv £(x ÷ h)

+ £_1 Y_(y)Sinu£(x * h)

- _,_ICz(y)Sin v£(x * h) .

From this

,, q 2y_(y)Yr.(y) - = C_(y) ,

where

2 2 2 2
=A +B ',v .qlt ,.

(B. 16)
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Equation (B.16) has a solution o£ the form

q£Y e-q£Y
Y£(Y) = C3£e + C4£ ÷ CS£ e-BY . (BoI7)

The firsttwo terms on the right hand side represent the complementary

solution and the third term is the particular solution. To obtain the

constant CS_ , the term Cs£e-BY is substituted in equation {B.16). This

gives

. 1 {Re px I}

Cs_ = (B2 _ q 2) h •

To evaluate the constants C3£ and C4£ , the two conditions used are

Y_(y} = 0 at y = _+k. Thus

and

C3£ eq£k + C4£e-q£k + Cs£e-Bk = 0

C3£e-q_k + C4£eq_k + Cs£e Bk = 0

(B.lS)

(B.19)

Equations (B.I8) and (B.19) are solved for C3£ and C4£.

and

Sinh(q£ B)k

C3L = CS£ Sinh 2qzk

Sinh (qt ÷ B)k

_4._ = C
S_ Sinh 2qtk

Sinh(q_

Y_(y) = CS_(
B)keq_ y + Sinh(qz + B)ke-q_ y

Sinh 2q_k

Therefore,

. e-BY
} • (B. 20)
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usCx'Y) = R_I Yt (y) SinutCx + h).
(B.21)

Final Solution

The complete solution to the momentum equation in an element is

given by

u(x,y) = {Ul(X,y) + u2(x,y) + u3(x,Y)}e(AX + By). (B.22)

To evaluate the velocity at the interior node P, x = 0 and y = 0 are

substituted in the above equation. This gives

Up = ulp + u2p + U3p •
(B.23)

Evaluating equations (B.IO), (B.11) and (B.21) at the node P and substi-

tuting in (B.23) gives after some rearrangement

Up = CNEUNE + CEcUEc + CsEUsE + CNcUNc + CscUsc

+ CNwUNw + CwcUwc + CswUsw ÷ Cp(Re px)p •
(B.24)

This is the 9-point FA solution of the Navier-Stokes equation. The

coefficients in equation (B.24] are given oy

-Ah E3 -Bk

CNE = n_l 3 . sm{e2- + .' ' " k2 (E2 k-_) e2h 2

** -kh E3

CEC " n_l,3.. Sm(E'k-"- (El - 7 )}Sin(nn/2)

_3
(E2 ÷ _--) }Sin (n=/2)
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e_kh E eBk E3 Sin (m,/2)

-Bk F:3

Bk

CNW : n_l,3

Ah E3 -Bk bl3

Sin{% (E2 _ _.z)+ _(-_2 + _)}Sin(n_/2)
2k

Ah E3
S e .

CWC n_l,3 m{k '" (El _-) }Sin(n_/2)

Ah

CSW : n_l,3 S _e__._m 2k2 (-E2 +

E3 e Bk _3

"_') 2h2 ('_'2 _-_.)}Sin(n_/2)

, XE(eAh _ (_i)£ e-Ah) Sinh(q£-B)k + $inh(q£+B)k

Cp : _SI - h(A2 + X2£)z [ Sinh 2q£k

-tl Sin(£ t/2)

Sin h
m •

S • -----'---

m Cesh qlk

ms,

i
p
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APPENDIX C

SOLUTION OF CONTINUITY EQUATION

In this Appendix, the solution for the continuity equation is ob-

tained. As mentioned in section 3.4, the analytic solution of u(x,y) in

an element is not used to calculate v from the continuity equation. In-

stead, u(x,y) is approximated by a polynomial and substituted in the

continuity equation which is then integrated to give the solution for v

for an element. Therefore,

2 2

u(x,y) = a0 + alx + a2Y + a3xY + a4x * aSY

22 2 2
+ a6x y + a7xY + a8x y. (C.1)

The coefficients in the above equation are written in terms of the sur-

rounding nodal values, i.e.,

a 0 = Up

1
a° _ w (t 2h uEC UWC)

1
a 2 -- _ (uNC - Usc)

1
a3 = _ (UNE - uNW - uSE * Usw)

I
a 4 " "--"W (uEC 2Up + Uwc)

2h"



1

a s = _2k2 (UNc - 2Up + Use)

1
a6 = (UNE + uSE + UNW4h2k 2 + USW

120

2uEC - 2t_c - 2uNC - 2Usc + 4Up)

1
a 7 = _ (UNE + _ +4hk 2 uSE - uNW Usw -2uEC 2Uwc)

1

a8 - 4h2k (UNE + UNW - 2uNC - UsE - Usw + 2Usc)

Differentiating equation (C.l) with respect to x gives

2 2
Ux = al + a3Y + 2a4x + 2a6xY + aTY + 2a8xY" (c.3)

The value of u is now evaluated at each of the nine elements. So
X

(Ux) p = Ux(O,O ) = a 1

(Ux)EC = Ux(h,0) = aI ÷ 2a4h

(Ux)wC = Ux(-h,O ) = a 1 - 2a4h

(Ux)NC = Ux(O,k ) = a 1 + a3k + a7k2

9

(Ux)sC = Ux(O,-k ) = a 1 - a3k + a7k"

(Ux)NE = Ux(h,k ) = a 1 + a3k + 2a4h + 2abhk2

+ a.,k2, ÷ 2ashk

(Ux)NW = Ux(-h,k) = a 1 + a3k = 2a4h 2aohk_

(C.4)

+ a7k2 - 2a8hk
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(Uz)SE " Ux (h,-k) = aI - a3k + 2a4h + 2a6hk 2

+ a7 k2 2a8hk

(Ux)sW _ Ux(-h,-k) = a I - a3k -2a4h - 2a6hk2

+ a7 R2 + 2a8hk .

Substituting equation (C.2) in (C.4) gives

1
(ux)p = i"fi(uEC " Uwc)

I

(Ux)EC --- _ (3uEC - 4Up ÷ UNC)

1
(Ux)WC = ._ (-uEC ÷ 4up - 3UWC)

1
(Ux)NC = 2"-'ff(UNE - uNW)

i

(Ux)sC = i-_ (uSE - Usw)

I

(Ux)NE = _ (3UNE + UNW - 4uNC)

I

(Ux)l_ = 2--h (-UNE = 3uNw + 4uNC)

1
(Ux}SE = 2-'h"(3uSE ÷ Usw -4Use)

I
(Ux)SW = 2-'fi" ['USE - 3usw " 4Usc) •

(c.s)

Now, a second degree polynomial is written for the derivative u , i.e.

u = i0 # _i x + a2Y . _sx) ' + _4x 2 - 2 - _ 2- + aSY + a6x'Y + a7xY 2 + aSx )'.(C.(_)
X
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The coefficients in equation (C.6) are expressed in terms of the deri-

vatives at the nodes as given by equation {C.5). So

_0 = {Ux)p

1
al = _ {{Ux)EC - (Ux)_C}

I
a2 = 2-k {{Ux)NC - (Ux)SC }

I
i3 = _ {(U×)NE - (Ux)NW- (Ux)SE + (Ux)SW}

a4 = --_-{_{Ux)EC
2h2

2(Ux) P + (Ux)wC}

as = 12k2 {(Ux)Nc _ 2{Ux)p ÷ {Ux)sC }

a6 = 4h2k21 {(Ux) NE + {Ux)SE ÷ {Ux)NW + {Ux}SW - 2(Ux}EC

2(Ux)wC 2 - 2 + 4(Ux) P}- {Ux)NC {Ux}SC

a7 = 4hk21 {(Ux)N E + (Ux)SE {Ux)NW {Ux)sW- 2(Ux) EC + 2(Ux)wC}

R8 = I {{Ux)N E + (Ux)NW
4h2k

- (Ux)NC (Ux) SE - (u×)SW + 2(Ux)SC} .

Integrating the continuity equation gives

P 0

v I =- S Ux(O,y)dy ,
SC -k

0

Vp VSC = f
-k

[a0 ÷ a2Y * aSY-]dy
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= _ (u x) p
1 1

k + _-k {(Ux)NC - (Ux)SC) - _-"k{(Ux)NC - 2(Ux) p + (Ux)sc}

k _ S(Ux)sc]= _ [(Ux)NC -,8(Ux)p

k i i 4 4 S +5
= z-_ [_E -_uNW" guEC +g%c- EuSE _Usw] "

Ifh=k,

Vp-

i i 5 5 I I
Vsc = 77 _E - _ UNw = Tg UsE - °17 Usw " Y uEC + _ UWC"(c.8)

Similarly, integrating thecontinuity equation from the node NC to

the node P gives

Vp
S 5 l 1 1 1 (C 9)

uNC = 2-_UNE - _-_UN_ - _ uSE + _Usw + g uEC - f UWC" •

Combining equations (C.8) and (C.9) gives

I i
vp : _ (vNC + Vsc) + g (UNE - uNW - uSE + Usw).

(C. 10)

Equation (C.lO) is used for calculating the velocity Vp if the

velocity Up has been calculated using x-momentum equation. If, on the

other hand, Vp is calculated from the y-momentum equation, up is
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obtained from the continuity equation. The equation used, which is

identical to equation (C.IO) is

u = 1 1
p _-(Uwc ÷ UEc) ÷ _ (vNE - vSE - vNW÷ VSW).
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*******************************************************

C THIS PROGRAM SOLVES THE NAVIER-STOKES

C EQUATIONS FOR A TWO DIMENSIONAL CAVITY

C USING PRIMITIVE VARIABLES(U,V,P). THE
C FINITE ANALYTIC METHOD IS USED TO

C OBTAIN LINEAR ALGEBRIAC EQUATIONS

C FROM THE GOVERNING EQUATIONS WHICH ARE
C THEN SOLVED BY THE IMPLICIT AND GAUSS-

C SIEDEL NUMERICAL METHODS. THIS PROGRAM

C WAS RUN ON PRIME-750 COMPUTER.
*******************************************************

LIST OF VARIABLES USED IN THE PROGRAMC

C

C

C RE

C

C PRESSO

C PRESSN

C UOLD

C UNEW

C VOLD

C VNEW

C IZMAX
C IRMAX

C ITERP

C ITRV

C IEND

C UP

C TOLUV

C RFP

C RFU

C RFV

C

REYNOLDS NO. BASED ON SOME REFERENCE

LENGTH AND VELOCITY SCALE

OLD VALUE OF PRESSURE

NEW VALUE OF P_ESSURE

OLD VALUE OF U-VELOCITY

NEW VALUE OF U-VELOCITY

OLD VALUE OF V-VELOCITY

NEW VALUE OF V-VELOCITY

MAX. NO. OF NODES IN X-DIRECTION

MAX. NO. OF NODES IN Y-DIRECTION

MAX. NO. OF ITERATIONS FOR PRESSURE

MAX. NO. OF ITERATIONS FOR VELOCITIES

MAX. NO. OF OVERAL ITERATIONS

VELOCITY OF MOVING PLATE

CONVERGENCE CRITERION FOR VELOCITIES

RELAXATION PA_%METER FOR PRESSURE

RELAXATION PARAMETER FOR U-VELOCiTY

RELAXATION PARAMETER EOR V-VELOCITY

*******************************************************

$INSERT SYSCOM>ERRD.F

$INSERT SYSCOM>KEYS.F

$INSERT SYSCOM>ASKEYS

IMPLICIT DOUBLE PRECISICN(A-H,O-Z)

COMMON/COMA/ PRESSN(61,61),UNEW(61,61),VNEW(61,61),

SFNEW(61,61),BBB(61),AAA(61),CC(61),C(61),D(61),

ST(61),AA(61)

COMMON/COMB/ ZETA(61,61),PSIN(61,61),PS(61),

SPRESSO(61,61),UOLD(61,61),VOLD(51,61)

COMMON/COMC/ CPIP!,CPIP0,CPIMI,CMIPI,

$CMIPO, CN!MI, CPOPI, CPO_41

COMMON/CO_,D/DCMIPI(74, 74),DCMIPO(74,74),
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SDCMIMI(74,74),DCPOPI(74,74),DCPOMI(74,74),

SDCPIPI(74,74),DCPIPO(74,74),DCPIMI(74,74)

COMMON/COME/COEFFP(61,61)

COMMON/COMF/A,B, IZZ, IRR,AKK, BKK

$,ITER, IZMAX, IRMAX,DX,DY

DATA CNE/O.O44685/,CNW/O.O44685/,CSE/O.044685/,

$CSW/O.O44685/,CEC/O.205315/,CWC/0.205315/,
$CNC/O.205315/,CSC/0.205315/,

SFNE/O.OOIB95076/,FNW/O.O01895076/,FSE/

$O.001895076/,FSW/0.OOI895076/,FEC/O.OI855256/,

SFWC/O.OI855256/,FNC/O.OI855256/,FSC/O.OI855256/,

$FP/O.2128948/
C+÷÷+++÷+++÷++÷++÷+++÷+++÷++++++÷+++÷++++÷+++++++÷++ _+÷+++++

C INPUT STATEMENTS

CALL SRCH$$(KSREAD,'INPT',4,7,TYPE,CODE)

CALL SRCH$$(KSWRIT,'OTPT',_,2,TYPE,CODE)

READ( II, *) IZMAX, IRMAX, ITERP, IEND, ITRV

READ(f1, *)X, Y,UP, RE, TOLUV
DO I00 IZ=I,74

DO I00 IR=I,74

READ(II,500)DCMIPI(IZ,IR),DCMIP0(IZ, IR),DCMIMI(IZ, IR),
$ DCPOPI(IZ, IR),DCPOMI(IZ,IR),

$ DCPIPI(IZ, IR),DCPIPO(IZ, IR),DCPIMI(IZ,IR)
I00 CONTINUE

C+÷÷++÷+++÷÷+÷+++++++÷+++÷++÷÷++÷++÷++++÷+++÷++÷++++++÷÷+++÷

WRITE(6,501) IZMAX, IRMAX, ITERP, IEND, ITRV,
$X,Y,UP,RE,TOLUV

C

C

C

RFP=I.0

RFU=I.0

RFV=I.0

DX=I.O/X

DY=I.O/Y

WRITE(6,502) DX,DY
IZMI=IZMAX-I

IRMI=IRMAX-I

IRM2=IRMI-I

IZM2=IZMI-I

IZMM=(IZMAX+I)/2
IZMMI=IZMM-I
IZMPI=IZMM+I

M=IZMI

C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

C INITIAL GUESS FOR VELOCITY AND PRESSURE
C+÷÷÷÷÷+++÷÷+÷÷÷+++++÷+++÷++++++÷+++÷++÷÷++÷÷÷++÷++++++÷÷÷_÷

DO 105 IR=2,1RMI

DO 105 IZ=2,1ZMI

UNEW(IZ, IR)=O.O

VNEW(IZ, IR)=0.O
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PRESSN( IZ, IR)=O.O
105 CONTINUE

C+++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++

C BOUNDARY CONDITIONS FOR U,V FOR CAVITY
C++ +++++++++++ _-+++ ++++++++ +++++++ ++++++++ +++ +++ + +++++++ +++ ++

DO Ii0 IZ=I, IZMAX

UNEW ( IZ, 1 )-UP

VNEW( IZ, i)=0.0

U'NEW( IZ, IRMAX)-0.0

VNEW( IZ, IRMAX)--0.0
110 CONT INUE

DO 115 IR=2, IRMI

UNEW( i, IR)=0.0

VNEW( I, IR)=0.0

UNEW( IZMAX, IR)-O .0

VNEW( IZMAX, IR)=0.O

CONT INUEI15

C

C

C

C

120

C

C

C

ELEMENTS OF TRIDIAGONAL MATRIX FOR

CALCULATING PRESSURE

DO 120 IZ=2,1ZMI

AA(IZ)=-CWC

BBB(IZ)=I.O

CC(IZ)=-CEC

RETURN POINT FOR OVERALL ITERATION

ITERA=0

901 ITERA=ITERA+l

IF(ITERA.GT. IEhH3) GO TO 801

WRITE(6,503) ITERA
C+÷+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

C BOUNDARY CONDITION FOR P FOR A CAVITY

C++++++++++++++++_++++++++++++++÷+++++++++++++++++++++++++++

DO 125 IZ=2,1ZMI

PRESSN(IZ,I)=(4.0*PRESSN(IZ,2)-PRESSN(IZ,3))/3.0

$-(8.0*VNEW(IZ,2)-VNEW(IZ,3))/(3.0*RE*DY)

PRESSN(IZ, IRMAX)=(4.0*PRESSN(IZ, IRMI)-PRESSN(IZ, IRM2))

$/3.0+(8.0*VNEW(IZ,IRMI)-VNEW(IZ, IRM2))/(3.0*RE*DY)
125 CONTINUE

DO 130 IR=2,1RMI

PRESSN(I,IR)=(4.0*PRESSN(2, IR)-PRESSN(3,IR))/3.0

$-(8.0*UNEW(2,1R)-UNEW(3,IR))/(3.0*RE*DX)

PRESSN(IZM/_K, IR)=(_.O*PRESSN(IZMI, IR)-PRESSN(IZM2,IR))

$/3.0+(8.0*UNEW(IZMI, IR)-UNEW(IZM2,1R))/(3.0*RE*DX)
130 CONTINUE

PRESSN(I,1)=(PRESSN(I,2)+PRESSN(2,1))/2.0

PRESSN(I,IRMAX)=(PRESSN(2,IRM_)+PRESSN(I, IRMI))/2.O

PRESSN(IZMAM, IRMAX)=(PRESSN([ZMAX, IRMI)+PRESSN(IZMI,

$1RMAX))/2.0
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C

C

C

C

135

C

C

C

PRESSN(IZMAX, I)=(PRESSN(IZMAX,2)+PRESSN(IZMI,I))/2.0

CALCULATION OF NON-HOMOGENEOUS TERM/2.0*(UX*VY-VX*UY)/
IN POISSON EQUATION

DO 135 IR=2,IRMI

DO 135 IZ=2,IZMI

UXP=(UNEW( IZ+I, IR)-UNEW( IZ-I, IR) )/(2. O*DX)
UYP= (UNEW (IZ, IR÷I )-UNEW( IZ, IR-I) )/(2. O*DY)

VXP=(VNEW(IZ+I, IR)-VNEW( IZ-I, IR) )/(2.O*DX)

V_=(VNEW( IZ, IR+I )-VNEW( IZ, IR-I) )/(2.O*DY)

FNEW( IZ, IR)=2. O* (UXP*VYP-UYP*VXP)
COl_f INUE

RETURN POINT FOR INTERNAL ITERATION OF PRESSURE

ITERB=O

902 ITERB=ITERB+I

IF(ITERB.GT. ITERP) GO TO 802
C+++++++++++÷++++++++++++++++++++++++++++++++++++++++++÷++++

C CALCULATION OF PRESSURE FROM POISSON EQUATION
C++++++++÷++++++++++++÷++++++++++++++++++++++++++++++_+÷++++

DO 140 IR=2,1RMI

DO 145 IZ=2,M

D(IZ)=CNE*PRESSN(IZ+I, IR+I)+CSE*PRESSN(IZ+I, IR-I)

$+CNW*PRESSN(IZ-I,IR+I)+CSW*PRESSN(IZ-I,IR-I)

$+CNC*PRESSN(IZ, IR+I)+CSC*PRESSN(IZ,IR-I)

P=FNE*FNEW(IZ+I,IR+I)+FEC*FNEW(IZ+I, IR)
$÷FWC*FNEW(IZ-I, IR)+FNC*FNEW(IZ,IR+I)+FSC*FNEW(IZ, IR-I)

$÷FNW*FNEW(IZ-I, IR÷I)÷FSE*FNEW(IZ÷I,IR-I)+FSW*FNEW(IZ-I,
$1R-I)+FP*FNEW(IZ, IR)

P=P*(DX**2)

D([Z)=D(IZ)-P
145 CONTINUE

D(Z)=D(2)+CWC*PRESSN(I,IR)

D(H)=D(M)+CEC*PRESSN(IZMAX, IR)
CALL TRIDAG(2,M,AA,BBB,CC,D,T)

DO 150 IZ=2,IZMI

150 PRESSN(IZ, IR)=T(IZ)
140 CONTINUE

DIMITL=O.O

PDIFF=O.O

DO 155 IR=2,IRMI

DO 155 IZ=2,1ZMI

DELP=PRESSN(IZ, IR)-PRESSO(IZ, IR)
DPMAX=DABS(DELP)

IF(DPMAX.GT.DINITL) GO TO 803
GO TO 155

803 IZPMAX=IZ

IRP_AX=IR

PDIFF=DPMAX



155

160

165

802

170

175
C
C
C

DINITL=DPMAX
CONTINUE
!F(PDIFF.LE.0.001)
IF(PDIFF.GT.0.O01)
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RFP=I.5

RFP=I.0

IF(PDIFF.GT.0.01) RFP=0.5

IF(PDIFF.GT.0.05) RFP=0.4

IF(PDIFF.GT.0.1) RFP=0.3
DO 160 IR=I, IRMAX

DO 160 IZ=I,IZMAX

PRESSN(IZ,IR)=PRESSO(IZ, IR)+RFP*

$(PRESSN(IZ, IR)-PRESSO(IZ, IR))
CONTINUE

DO 165 IZ=I,IZMAX

DO 165 IR=I,IRMAX

PRESSO(IZ,IR)=PRESSN(IZ, IR)
CONTINUE

IF (PDIFF.LE.O.O00OI)GO TO 802
GO TO 901

DO 170 IR=I, IRM_

DO 170 IZ=I,IZM_

PRESSN(
DO 175

DO 175

PRESSO(

IZ, IR)=PRESSN(IZ, IR)-PRESSN(IZMM, IRMAX)

IZ=I,IZMAX

IR=I,IRM_

IZ, IR)=PRESSN(IZ, IR)
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RETURN POINT FOR INTERNAL ITERATION OF VELOCITY

ITERU=0

903 ITERU=ITERU+I
IRMAXI=IRMAX+I

C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

C CALCULATION OF VELOCITY FROM MOMENTUM EQUATION
C++÷++++++-'-+++++++÷++++÷+++++_++++++++++++++++++++÷++++++++÷

DO 180 IR=2,IRMI

DC 180 IZ=2,IZMI
IZZ=IZ

IRR=iR
C
C
C

CALCULATION OF AVERAGE VELOCITIES U&V

UU=(UNEW(IZ+I,!R*I)+4.0*UNEW(IZ+I,IR)÷UNEW(IZ÷I,IR-I)

$+4.0*UNEW(IZ,IR+I)+I6.0*UNEW([Z,IR)+4.0*UNEW(IZ, IR-I)

$+UNEW(IZ-I,IR+I)+4.0*UNEW(IZ-I, IR)+UNEW(IZ-I, IR-I))

$/36.0
IF(UI;.GT.I.O)UU=I.0
A=O.5*RE+UU

W=(VNEW(IZ÷I,IR_I)÷4.0*VNEW(IZ_I,IR)÷VNEW(IZ+I,IR-I)

$+4.0*VNEW(IZ, IR+I)÷I6.0*VNEW(IZ, IR)+4.0*VNEW(IZ,IR-I)

$÷VNEW(IZ-I,IR÷I)+4.0*VNEW(IZ-I, IR)+VNEW(IZ-I,IR-I))
$/36.0

IF(_Z.GT.I.O)VV=I.C
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OF POC;;, _5,_,.:_.-B=O.5*RE*VV

CALL HOMOG

CALL NHOMOG

AKK=DABS(A)

BKK=DABS(B)

ASQ=AKK**2

BSQ=BKK**2

UHNEW=CPIPI*UNEW(IZ+I,IR+I)+CPIPO*UNEW(

$1Z+I,IR)+CPIMI*UNEW(IZ+I,IR-I)+CPOPI*UNEW(IZ, IR*I)

$+CPOMI*UNEW(IZ, IR-I)+CMIPI*UNEW(IZ-I, IR+I)+CMIPO

$*UNEW(IZ-I,IR)+CMIMI*UNEW(IZ-I,IR-I)

UNH=COEFFP(IZ,IR)*RE*(PRESSN(IZ+I,IR)-

SPRESSN(IZ-I, IR))/(2.0*DX)
UNEWI=UHNEW+UNH

VNEWI=O.5*(V-NEW(IZ, IR-I)+VNEW(IZ, IR+I))

$+O.125*(UNEW(IZ+I, IR+I)-UNEW(IZ-I, IR+I)-UNEW(IZ+I,

$1R-I)+UNEW(IZ-I,IR-I))

VHNEW=CPIPI*VNEW(IZ÷I,IR+I)+CPIPO*VNEW(

$1Z+I,IR)+CPIMI*VNEW(IZ+I,IR-I)+CPOPI*VNEW(IZ, IR+I)

$+CPOMI*VNEW(IZ, IR-I)+CMIPI*VNEW(IZ-I,IR+I)÷CMIPO

$*VNEW(IZ-I, IR)+CMIMI*VNEW(IZ-I,IR-I)

VNH=COEFFP(IZ,IR)*RE*(PRESSN(IZ,IR+I)-

SPRESSN(IZ, IR-I))/(2.0*DY)
VNEW2=VHNEW+VNH

UNEW2=O.5*(UNEW(IZ+I,IR)+UNEW(IZ-I,IR))

$+O.125*(VNEW(IZ+I, IR+I)-VNEW(IZ+I, IR-I)-VNEW(IZ-I,

$1R+I)+VNEW(IZ-I,IR-I))

UNEW(IZ, IR)=(UNEWI*ASQ+BSQ*UNEW2)/(ASQ+BSQ)

VNEW(IZ, IR)=(VNEWI*ASQ+BSQ*VNEW2)/(ASQ+BSQ)
180 CONTINUE

C÷++÷÷+÷÷++++++++++÷+++++++++++÷++÷+++++++++++++_+++++++++++

DUINTL=O.O

DVINTL=0.O

UDIFF=O. 0

VDIFF=0.0

DO 185 IR=2, IRM1
DO 185 IZ=2, IZMI

DELU=UNEW(IZ,IR)-UOLD(IZ,IR)

DELV=VNEW(!Z,IR)-VOLD(IZ,IR)

DUMAX=DABS(DELU)

DVMAX=DABS(DELV)

IF(DUMAX.GT.DUINTL) GO TO 804
GO TO 805

804 IZUMAX=IZ

IRUMAX=IR

UDIFF=DUMAX

DUINTL=DUMAX

805 IF(DVMAX.GT.DVINTL) GO TO 806
GO TO 185

806 IZVMAX=IZ

IRVMAX=IR



185

190

195

8O8

C

C

C

807

2OO

205

210

904
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VD I FF=DVMAX

DV INTL=DVMAX

CONTINUE

IF(UDIFF. LE. 0. 001)

OF FC-,., :' ,-_'_'L_'[I'

RFU=I .0

IF(UDIFF.GT.O.0OI)RFU=0.6

IF(UDIFF.GT.O.01)REU=0.4

IF(UDIFF.GT.0.1) RFU=0.3

IF(VDIFF.LE.0.O01) RFV=I.O

IF(VDIFF.GT.O.OOI)RFV=0.6

IF(VDIFF.GT.0.OI)RFV=O._

IF(VDIFF.GT.0.1)RFV=0.3

DO 190 IR=2,1RMI

DO 190 IZ=2,1ZMI

UNEW(IZ, IR)=UOLD(IZ, IR)+RFU*(UNEW(IZ,IR)-UOLD(IZ, IR))

VNEW(IZ, IR)=VOLD(IZ, IR)+RFV*(VNEW(IZ,IR)-VOLD(IZ, IR))

CONTINUE

DO 195 IR=I,IRMAX

DO 195 IZ=I,IZMAX

UOLD(IZ, IR)=UNEW(IZ, IR)

VOLD(IZ, IR)=VNEW(IZ, IR)

CONTINUE

IF(ITERU.GT. ITRV) GO TO 807

IF(UDIFF.LE.TOLUV) GO TO 808
GO TO 903

IF(VDIFF.LE.TOLUV) GO TO 807

GO TO 903

CALCULATION OF VORTICITY AND STREAM-FUNCTION

DO 200 IR=2,IRMI

DO 200 IZ=2,1ZMI

ZETA(IZ, IR)=(UNEW(IZ,IR+I)-UNEW(IZ, IR-I))/(2.*DY)

$-(VNEW(IZ+I, IR)-VNEW(IZ-I,IR))/(2.*DX)

CONTINUE

DO 205 iZ=2,1ZMI

ZETA(IZ, I)=-2.*(DY-PSIN(IZ,2))/DYY

ZETA(IZ, IRMAX)=2o*PSIN(IZ, IRMI)/DYY
CONTINUE

DO 210 IR=2,IRMI

ZETA(I,IR)=2.*PSIN(2,IR)/DXX

ZETA(IZMAX, IR)=2.*PSIN(IZMI,IR)/DXX

CONTINUE

ZETA(I,I)=-2.0/DX

ZETA(IZMAX, I)=-2.0/DX
ITERPZ=0

ITERPZ=ITERPZ+I

DO 215 IR=2,1RMI

DO 220 IZ=2,1ZMI

PS(IZ)=CNE*PSIN(IZ+I,IR_I)+CSE*PSIN(IZ+I,IR-I)

$+CNW*PSIN(IZ-I,IR+I)÷CSW*PSIN(IZ-I,IR-I)

$+CNC*PSIN(IZ, IR+I)+CSC*PSIN(IZ, IR-I)



$
$
$
$

220

225

215

C

C

C

801

230

235

240

245

-(FNE*ZETA(IZ+I,IR+I)÷FEC*ZETA(IZ+I, IR)

+FWC*ZETA(IZ-I,IR)+FNC*ZETA(IZ,IR+I)+FSC*ZETA

(IZ, IR-I)+FNW*ZETA(IZ-I,IR+I)+FSE*ZETA(IZ+I, IR-I)+

FSW*ZETA(IZ-I, IR-I)+FP*ZETA(IZ,IR))*DXX

CONTINUE

PS(2)=PS(2)+CWC*PSIN(I,IR)

PS(M)=PS(M)+CEC*PSIN(IZMAX, IR)

CALL TRIDAG(2,M,AA,BBB,CC,PS,T)

DO 225 IZ=2,IZMI

PSIN(IZ, IR)=T(IZ)

CONTINUE

IF(ITERPZ.GT.30)GO TO 901
GO TO 904

EORCE BALANCE CHECK ON CAVITY

SUMPI=O.

SUMP2=0.

DO 230 IZ=I,IZMAX

SUMPI=SUMPI+PRESSN(IZ,I)

SUMP2=SUMP2+PRESSN(IZ, IRMAX)

CONTINUE

SUMPI=SUMPI*DX

SUMP2=SUMP2*DX

DIFFP=SUMPI-SUMP2

SUMUI=0.

SUMU2=0.

DO 235 IR=I,IRMAX

SUMUI=SUMUI"VNEW(IZMI,IR)

SUMU2=SUMU2+VNEW(2,IR)
CONTINUE

SUMUI=SUMUI*DY/(DX*RE)

SUMU2=SUMU2*DY/(DX*RE)
DIFFU=SUMUI-SUMU2

CHECKY=DABS(DIFFP)+DABS(DIFFU)
SUMP3=0.O

SUMP4=O.O

DO 240 IR=I,IRMAX

SUMP3=SUMP3+PRESSN(I, IR)

SUMP4=SUMP4+PRESSN(IZMAX, IR)
CONTINUE

SUMP3=SUMP3*DY

SUMP4=SUMP4*DY

SUMV3=O.O

SUMV4=0.O

DO 245 IZ=I,IZMAX

SUMV3=SUMV3-UNEW(IZ, IRMI)

SUMV4=SUMV_+UNEW(!Z,2)-UNEW(IZ, I)
CONTINUE

SUMV3=SUMV3*DX/(DY*RE)

SUMV4=SUMV4*DX/(DY*RE)

132
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255

260

265

270

C

C

C

500

501
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CHECKX=DABS(SUMP3)-DABS(SUMP4)-DABS(SUMV3)+DABS(SUMV4)

WRITE(6,S06)

DO 250 IZ=I,IZMAX

WRITE(6,505) (PRESSN(IZ,[R),IR=I,IRMAX)

WRITE(6,506)

DO 255 IZ=I,IZMAX

WRITE(6,505) (UNEW(IZ,IR),IR=I,IRMAX)

WRITE(6,507)

DO 260 IZ=I,IZMAX

WRITE(6,505) (VNEW(IZ,IR),IR=I,IRMAX)

WRITE(6,508)

DO 265 IZ=I,IZMAX

WRITE(6,505)(PSIN(IZ,IR),IR=I,IRMAX)

WRITE(6,509)

DO 270 IZ=I, IZMAX

WRITE(6,505)(ZETA(IZ,IR),IR=I,IRMAX)

WRITE(6,510) CHECKX

WRITE(6,511) CHECKY

FORMATS

FORMAT(IX,8F9.6)

FORMAT('IZMAX=',I3,/'IRMAX=',I3/'ITERP =', I3/

$'IEND =',I3/'ITRV =',I3/'X =',F9.6/'Y =',F9.6/

$'UP=',F9.4/'RE=',F9.4/'TOLUV=',F6.4/)

502 FORMAT('DX=',F6.4/'DY=',F6.4/)

503 FORMAT(//'ITERA=',I3)

504 FORMAT(/'PRESSURE IS')

505 FORMAT(/'IZ=',I3,3X, IIF9.5,9(/9X, IOF9.5,))

506 FORM.AT(/'VEUOCITY U IS')

507 FORMAT(/'VELOCITY V IS')

508 FORMAT(/'STREAM-FUNCTION IS')

509 FORMAT(/'VORTICITY IS')

510 FORMAT('NET FORCE IN X-DIRECTION IS',EI4.7)

511 FORMAT('NET FORCE IN Y-DIRECTION IS',EI4.7)
CALL EXIT

END

C÷+÷÷÷++++++÷++÷++++++++++++++++++_+++++++++++++++++++++++

C+++++÷4 +++++++++++++++++++++++++++++++++++++÷++++++++++++

C

C SUBROUTINE TO CALCULATE PRESSURE USING IMPLICIT

C METHOD.

C

C++++++++++++++++++@+++++++++++++++++++++++++÷++++++++++++

C+_+_÷++÷÷+÷+++++++_++++++÷++++++++_++++++++++++++++++++++

SUBROUTINE TRIDAO(IF,L,AAA,BBB,C,D,V)

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

DIMENSION AAA(61),BBB(61),C(61),D(61),V(61),_ETA(61),

SGAMMA(61)

BETA(IF)=BBB(IF)

GAMMA(IF)=D(IF)/BETA(IF)
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IFPI=IF+I
DO 1 I=IFPI,L
BETA(I )=BBB( I )-AAA( I )*C(I-I)/BETA( I-I )

1 GAMMA(I )=(D ( I ) -AAA( I ) *GAMMA( I - 1 ) )/BETA ( I )
V( L )=GAMMA(L)
LAST=L- IF
DO 2 K=I,LAST
I=L-K

2 V( ! )=GAMMA(I )-C( I ) *V( I +1)/BETA( I )
RETURN
END

C+++4-++++++++ ++÷+++++÷4"+++ +++++÷++++++ +++++ ++++++++++++ ++++++

C+++++++÷++++ ++÷+++÷+++÷+++++÷+÷++++++++++++++++÷+++++++++÷÷+

C

C SUBROUTINE TO CALCULATE THE COEFFICIENTS FOR

C THE MOMENTUM EQUATION.

C THE COEFFICIENTS ARE STORED IN A DATA-BANK FOR

C VARIOUS VALUES OF A AND B. DEPENDING ON THE

C VALUE OF A AND B IN EACH ELEMENT THE COEFFICIENTS

C ARE INTERPOLATED FROM THE DATA-BANK.

C

C÷+÷++++++÷+++++++++++÷++++++++++++++÷++÷÷++++++++++++++++++.

C+++++++++++++++++++++÷++++++++++++÷++++++++++++++++++++++÷+÷

SUBROUTINE HOMOG

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

COMMON/COMD/DCMIPI(74,74),DCMIPO(74,74),DCMIMI(74,74),

SDCPOPI(74,74),DCPOMI(74,74),DCPIPI(74,74),DCPIP0(74,74),

SDCPIMI(74,74)

COMMON/COMF/A,B, IZZ,IRR,AKK,BKK

$,ITER, IZMAX, IRMAX,DX,DY

COMMON/COMC/ CPIPI,CPIPO,CPIMI,CMIPI

$,CMIPO,CMIMI,CPOPI,CPOMI

cssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
C FIND THE LOCATION OF

C CORRESPONDANCE POINT IN DATA BANK

CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

AH=A*DX

BK=B*DY

AAH=DABS(AH)

BBK=DABS(BK)

16 AAC=AAH/O.01

IF(AAH LT.0.OI)GO TO i0

IF(AAH LE.0.I.AND.AAH.GE.O.01)GO TO II

IF(AAH LE.I.O.AND.AAH.GT.O.I)GO TO 12

IF(AAH LE.10.O.AND.AAH.GT.I.0)GO TO 13

IF(AAH LT.100.O.AND.AAH.GT.10.0)GO TO 14

IF(AAH GE.100.0)AAH=99.9999

GO TO 16

i0 ADX=I.0

NOA=I

AAX=AAC



Ii

12

13

14

15

26

2O

21

22

23

GO TO 15

ADX=0.5

PP=(AAC-I.0)/0.5
NP=PP

AAX=(PP-NP)*0.5
NOA=NP÷2

GO TO 15

ADX=5.0

PP=(AAC-10.0)/5.0
NP=Pp

AAX=(PP-NP)*5.0
NOA=NP+20

GO TO 15

ADX=50.O

PP=(AAC-IO0.O)/50.O
Np=pp

AAX=(PP-NP)*50.O
NOA=NP+38

GO TO 15

ADX=500.O

PP=(AAC-1000.0)/500.0
NP=pp

AAX=(PP-NP)*500.O
NOA=NP+56

CONTINUE

BBC=BBK/0.01

IF(BBK.LT 0.01) GO TO 20

IF(BBK.LE 0.I.AI_D.BBK.GE.0.01)GO TO 21

IF(BBK.LE 1.0.AND.BBK.GT.0.1)GO TO 22

IF(BBK.LE IO.0.AND.BBK.GT.I.0)GO TO 23

IF(BBK.LT IO0.O.AND.BBK.GT.10.O)GO TO 24
IF(BBK.GE IO0.O)BBK=99.9999
GO TO 26

BDY=I.0

NOB=I

BBY=BBC

GO TO 25
BDY=0.5

PP=(BBC-I.0)/0.5
NP=PP

BBY=(PP-NP)*0.5
NOB=NP+2

GO TO 25

BDY=5.0

PP=(BBC-10.O)/5.0
NP=pp

BBY=(PP-NP)*5.0
NOB=NP+20

GO TO 25

BDY=50.O

PP=(BBC-IO0.0)/50.0

135
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NP=PP

BBY=(PP-NP)*50.O
NOB=NP+38

GO TO 25

24 BDY=500.O

PP=(BBC-IO00.0)/500.O
NP=PP

BBY=(PP-NP)*500.0
NOB=NP+56

25 CONTINUE

CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

C INTERPOLATION OF THE LOCATED POINT

C IN DATA BANK

CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

NOAI=NOA+I

NOBI=NOB+I

XODX=AAX/ADX

YODY=BBY/BDY

CO0=I-XODX-YODY+(XODX*YODY)

CI0=XODX-(XODX*YODY)
CII=XODX*YODY

COI=YODY-(XODX*YODY)

CMIPI=DCMIPI(NOA,NOB)*CO0+DCMIPI(NOAI,NOB)*ClO+
1 DCMIPI(NOAI,NOBI)*CII+DCMIPI(NOA,NOBI)*C01

CMIPO=DCMIPO(NOA,NOB)*COO+DCMIPO(NOAI,NOB)*CI0+
2 DCMIPO(NOAI,NOBI)*ClI+DCMIP0(NOA,NOBI)*C01

CMIMI=DCMIMI(NOA.NOB)*COO+DCMIMI(NOAI,NOB)*CI0+
3 DCMIMI(NOAI,NOBI)*CII+DCMIMI(NOA,NOBI)*C01

CPOPI=DCPOPI(NOA,NOB)

% DCPOPI(NOAI

CPOMI=DCPOMI(NOA,NOB)

5 DCPOMI(NOAI

CPIPI=DCPIPI(NOA,NOB)

6 DCPIPI(NOAI

CPIPO=DCPIPO(NOA,NOB)
7 DCPIPO(NOAI

CPIMI=DCPIMI(NOA,NOB)

*CO0+DCPOPI(NOAI,NOB)*CIO+

,NOBI)*ClI+DCPOPI(NOA,NOBI

*CO0+DCPOMI(NOAI,NOB)*CIO+

,NOBI)*CII+DCPOMI(NOA,NOBI

*CO0+DCPIPI(NOAI,NOB)*CIO+

,NOBI)*CII+DCPIPI(NOA,NOBI
*CO0+DCPIPO(NOAI,NOB)*CIO+

,NOBI)*ClI+DCPIPO(NOA, NOBI

*CO0+DCPIMI(NOAI,NOB)*CI0+

)*C01

)*COl

)*C01

)*C01

8 DCPIMI(NOAI,NOBI)*CII+DCPIMI(NOA,NOBI)*C01
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

C TURN TO THE EXACT DIRECTION OF

C COEFFICIENTS .... A AND B
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

IF(A.GE.O.O)GO TO 33
CNE=CPIPI

CPIPI=CMIPI

CMIPI=CNE

CEC=CPIPO

CPIPO=CMIPO

CMIPO=CEC

CSE=CPIMI

CPIMI=CMIMI
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CMIMI=CSE

33 CONTINUE

IF(B.GE.0.0)GO TO 34
CNW=CMIP1

CMIPI=CMIM1

CMIMI=CNW

CNC=CPOPI

CPOPI=CPOM1

CPOMI=CNC

CNE=CPIP1

CPIPI=CPIM1

CPIMI=CNE

34 CONTINUE

RETURN
END

C+++_÷+++++++++÷++÷+++++++++++++÷_+++++++++++++++++++++++++

C+++÷÷+++++++++++_++++++++++++++÷_+++÷+++÷++++++÷++++++++++

C

C SUBROUTINE TO CALCULATE THE COEFFICIENT OF

C THE INHOMOGENEOUS TERM IN THE MOMENTUM

C EQUATION
C
C+++÷+++÷++÷÷++÷++÷++++++÷+++++++÷+++÷++++++++++_++++++++++

C++÷++++++++÷++÷++÷+++++++++++++++++++++++÷+++++++++ +++++++

SUBROUTINE NHOMOG

IMPLICIT DOUBLE PRECISION (A - H, O - Z)

COMMON/COMF/A,B,IZZ, IRR,AKK, BKK
$,ITER, IZMAX, IRMAX, DX,DY

COMMON/COME/COEFFP(61,61)
SUM=O.

DO 10 L=1,35,2

AL=FLOAT(L)

H=AL*l.5707963/DX

QLS=(A**2)+(B**2)+(H**2)

QL=DSQRT(QLS)
XI=DEXP((QL-B)*DY)-DEXP(-(QL-B)*DY_

X2=DEXP((QL+B)*DY)-DEXP(-_QL÷B)*DY)

X3=DEXP(2.0*QL*DY)-DEXP(-2.O*QL*DY)

X4=(XI+X2)/X3
X5=X4-1.0

X6=DEXP(A*DX)+DEXP(-A*DX)
X7=H*X6/DX

X8=(QLS-B**2)
XX8=H**2÷A**2

xg=x7*x5/(X8*XX8)

X0=Xg*DSIN(AL*I.5707963)
SUM=SUM÷XO

I0 CONTINUE

COEFFP(IZZ, IRR)=SUM
RETURN

END



158

REFERENCES

IQ Li, P. and Chen, C.J.: "The Finite Analytic Method for Steady and

Unsteady Heat Transfer Problems," Paper No. 80-HT-86, ASME/AICE

National Heat Transfer Conference, Orlando, Florida, July 27-50,
1980.

o Chen, C.J., Naseri-Neshat, H. and Li, P.: "The Finite Analytic Method

- Applications of Analytic Solution Techniques to the Numerical

Solutions of Ordinary and Partial Differential Equations," Report No.

E-CJC-I-80, 1980, Energy Division, Univ. of Iowa, Iowa City, Iowa.

Also see Journal of Numerical Heat Transfer, Vol. 4, 1981, pg.

179-197.

o Ghia, K.N., Hankey, W.L. and Hodge, J.K.: "Study of Incompressible

Navier-Stokes Equations in Primitive Variables Using Implicit Nu-

merical Technique," Paper No. 77-648, AIAA, 3rd Computational Fluid

Dynamics Conference, Albuquerque, N.Mexico, June 1977, pg. 156-168.

o Burggraf, 0.R.: "Analytic and Numerical Studies of the Structure

of Steady Separated Flows," Journal of Fluid Mechanics, Vol. 24,

Part I, 1966, pg. 115-151.

5. Schlichting, H.: "Boundary Layer Theory," Chapter IX, McGraw-Hill

Book Company, New York, 1979, Seventh Edition.

So Plotkin, A. and Flugge-Lotz, I.: "A Numerical Solution for the Lami-

nar Wake Behind a Finite Flat Plate." Journal of Applied Mechanics,

Vol. 38, 1968, pg. 625-650.

. Tollmein, W.: "Grenzschichten, Handbook der Experimental Physik,"

Vol. IV, Akademische, Yerlagsgesellschaft, MBH., Leipzig, 1931, pg.

267-269.

8. Berger, S.A.: "Lamlnar Wakes," Chapter 2, American Elsevier Publi-

shing Company, Inc., New York, 1971.

9. Rayleight, J.W.: "The Theory of Sound," Vol. II, 2nd Edition, Dover

Publications, New York, 1945.

I0. Sheikhalslami, M.Z.: "Application of Finite Analytic Method to the

Numerical Solution of Two Point Boundary Value Problems of Ordinary

Differential Equations," M.S. Thesis, Mechanical Engineering Pro-

gram, 1980, Univ. of Iowa, Iowa City, Iowa.

II. Khalighi, B.: 'gumerical Solution of Two-Dimensional Poisson and La-

Place Equations by Finite Analytic Methods," M.S Thesis, _lechanical

Engineering Program, 1980, Univ. of Iowa, Iowa City, Iowa.




